SSJ
V. labo.

umontreal.iro.lecuyer.probdist
Interface Distribution

All Known Implementing Classes:
AndersonDarlingDist, AndersonDarlingDistQuick, BernoulliDist, BetaDist, BetaSymmetricalDist, BinomialDist, CauchyDist, ChiDist, ChiSquareDist, ChiSquareDistQuick, ChiSquareNoncentralDist, ConstantDist, ConstantIntDist, ContinuousDistribution, CramerVonMisesDist, DiscreteDistribution, DiscreteDistributionInt, EmpiricalDist, ErlangDist, ExponentialDist, ExponentialDistFromMean, ExtremeValueDist, FatigueLifeDist, FisherFDist, FoldedNormalDist, FrechetDist, GammaDist, GammaDistFromMoments, GeometricDist, GumbelDist, HalfNormalDist, HyperbolicSecantDist, HypergeometricDist, HypoExponentialDist, HypoExponentialDistEqual, HypoExponentialDistQuick, InverseDistFromDensity, InverseGammaDist, InverseGaussianDist, JohnsonSBDist, JohnsonSLDist, JohnsonSUDist, KolmogorovSmirnovDist, KolmogorovSmirnovDistQuick, KolmogorovSmirnovPlusDist, LaplaceDist, LogarithmicDist, LogisticDist, LoglogisticDist, LognormalDist, LognormalDistFromMoments, NakagamiDist, NegativeBinomialDist, NormalDist, NormalDistQuick, NormalInverseGaussianDist, ParetoDist, PascalDist, Pearson5Dist, Pearson6Dist, PiecewiseLinearEmpiricalDist, PoissonDist, PowerDist, RayleighDist, StudentDist, StudentDistQuick, TriangularDist, TruncatedDist, UniformDist, UniformIntDist, WatsonGDist, WatsonUDist, WeibullDist

public interface Distribution

Distribution

This interface should be implemented by all classes supporting discrete and continuous distributions. It specifies the signature of methods that compute the distribution function F(x), the complementary distribution function $ \bar{F}$(x), and the inverse distribution function F-1(u). It also specifies the signature of methods that returns the mean, the variance and the standard deviation.


Method Summary
 double barF(double x)
          .
 double cdf(double x)
          .
 double getMean()
          .
 double[] getParams()
          .
 double getStandardDeviation()
          .
 double getVariance()
          .
 double inverseF(double u)
          .
 

Method Detail

cdf

double cdf(double x)
. \begin{tabb}Returns the distribution function $F(x)$.
 \end{tabb}
xvalue at which the distribution function is evaluated distribution function evaluated at x


barF

double barF(double x)
. \begin{tabb}Returns $\bar F(x) = 1 - F(x)$.
 \end{tabb}
xvalue at which the complementary distribution function is evaluated complementary distribution function evaluated at x


inverseF

double inverseF(double u)
. \begin{tabb}Returns the inverse distribution function
 $F^{-1}(u)$, defined in.
 \end{tabb}
uvalue in the interval (0, 1) for which the inverse distribution function is evaluated the inverse distribution function evaluated at u


getMean

double getMean()
. \begin{tabb}Returns the mean of the distribution function.
 \end{tabb}


getVariance

double getVariance()
. \begin{tabb}Returns the variance of the distribution function.
 \end{tabb}


getStandardDeviation

double getStandardDeviation()
. \begin{tabb}Returns the standard deviation of the distribution function.
 \end{tabb}


getParams

double[] getParams()
. \begin{tabb}Returns the parameters of the distribution function in the same
 order as in the constructors.
 \end{tabb}


SSJ
V. labo.

To submit a bug or ask questions, send an e-mail to Pierre L'Ecuyer.