SSJ
V. 2.6.2.

umontreal.iro.lecuyer.randvarmulti
Class MultinormalGen

java.lang.Object
  extended by umontreal.iro.lecuyer.randvarmulti.RandomMultivariateGen
      extended by umontreal.iro.lecuyer.randvarmulti.MultinormalGen
Direct Known Subclasses:
MultinormalCholeskyGen, MultinormalPCAGen

public class MultinormalGen
extends RandomMultivariateGen

Extends RandomMultivariateGen for a multivariate normal (or multinormal) distribution. The d-dimensional multivariate normal distribution with mean vector μRd and (symmetric positive-definite) covariance matrix Σ, denoted N(μ, Σ), has density

f (X) = exp(- (X - μ)tΣ-1(X - μ)/2)/((2π)^d  )1/2,

for all XRd, and Xt is the transpose vector of X. If ZN( 0,I) where I is the identity matrix, Z is said to have the standard multinormal distribution.

For the special case d = 2, if the random vector X = (X1, X2)t has a bivariate normal distribution, then it has mean μ = (μ1, μ2)t, and covariance matrix

Σ = [$\displaystyle \begin{array}{cc}
 \sigma_1^2 & \rho\sigma_1\sigma_2 \\
 \rho\sigma_1\sigma_2 &\sigma_2^2
 \end{array}$]

if and only if Var[X1] = σ12, Var[X2] = σ22, and the linear correlation between X1 and X2 is ρ, where σ1 > 0, σ2 > 0, and -1 <= ρ <= 1.


Constructor Summary
MultinormalGen(NormalGen gen1, int d)
          Constructs a generator with the standard multinormal distribution (with μ = 0 and Σ = I) in d dimensions.
 
Method Summary
 double[] getMu()
          Returns the mean vector used by this generator.
 double getMu(int i)
          Returns the i-th component of the mean vector for this generator.
 DoubleMatrix2D getSigma()
          Returns the covariance matrix Σ used by this generator.
 void nextPoint(double[] p)
          Generates a point from this multinormal distribution.
 void setMu(double[] mu)
          Sets the mean vector to mu.
 void setMu(int i, double mui)
          Sets the i-th component of the mean vector to mui.
 
Methods inherited from class umontreal.iro.lecuyer.randvarmulti.RandomMultivariateGen
getDimension, getStream, nextArrayOfPoints, setStream
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

MultinormalGen

public MultinormalGen(NormalGen gen1,
                      int d)
Constructs a generator with the standard multinormal distribution (with μ = 0 and Σ = I) in d dimensions. Each vector Z will be generated via d successive calls to gen1, which must be a standard normal generator.

Parameters:
gen1 - the one-dimensional generator
d - the dimension of the generated vectors
Throws:
IllegalArgumentException - if the one-dimensional normal generator uses a normal distribution with μ not equal to 0, or σ not equal to 1.
IllegalArgumentException - if d is negative.
NullPointerException - if gen1 is null.
Method Detail

getMu

public double[] getMu()
Returns the mean vector used by this generator.

Returns:
the current mean vector.

getMu

public double getMu(int i)
Returns the i-th component of the mean vector for this generator.

Parameters:
i - the index of the required component.
Returns:
the value of μi.
Throws:
ArrayIndexOutOfBoundsException - if i is negative or greater than or equal to getDimension.

setMu

public void setMu(double[] mu)
Sets the mean vector to mu.

Parameters:
mu - the new mean vector.
Throws:
NullPointerException - if mu is null.
IllegalArgumentException - if the length of mu does not correspond to getDimension.

setMu

public void setMu(int i,
                  double mui)
Sets the i-th component of the mean vector to mui.

Parameters:
i - the index of the modified component.
mui - the new value of μi.
Throws:
ArrayIndexOutOfBoundsException - if i is negative or greater than or equal to getDimension.

getSigma

public DoubleMatrix2D getSigma()
Returns the covariance matrix Σ used by this generator.

Returns:
the used covariance matrix.

nextPoint

public void nextPoint(double[] p)
Generates a point from this multinormal distribution.

Specified by:
nextPoint in class RandomMultivariateGen
Parameters:
p - the array to be filled with the generated point

SSJ
V. 2.6.2.

To submit a bug or ask questions, send an e-mail to Pierre L'Ecuyer.