Lattice Builder Manual
Software Package for Constructing Rank-1 Lattices
LatBuilder::Norm::Normalizer< LatType::EMBEDDED, NORM > Class Template Reference

Specialization of LatType::Normalizer for embedded lattices. More...

#include <Normalizer.h>

Inherits LatBuilder::BasicMeritFilter< LatType::EMBEDDED >.

Public Types

typedef RealVector MeritValue
typedef LatBuilder::LatDef< LatType::EMBEDDED > LatDef
typedef NORM Norm
- Public Types inherited from LatBuilder::BasicMeritFilter< LatType::EMBEDDED >
typedef MeritFilterTraits< LAT >::MeritValue InputMeritValue
typedef MeritFilterTraits< OUT >::MeritValue OutputMeritValue
typedef LatBuilder::LatDef< LAT > LatDef

Public Member Functions

 Normalizer (Norm norm)
MeritValue operator() (const MeritValue &merit, const LatDef &lat) const
 Normalizes the values in merit. More...
const Norm & norm () const
std::string name () const
void setWeights (RealVector levelWeights)
 Sets the per-level weights. More...
const RealVectorweights () const
- Public Member Functions inherited from LatBuilder::BasicMeritFilter< LatType::EMBEDDED >
virtual OutputMeritValue operator() (const InputMeritValue &, const LatDef &) const =0

Detailed Description

template<class NORM>
class LatBuilder::Norm::Normalizer< LatType::EMBEDDED, NORM >

Specialization of LatType::Normalizer for embedded lattices.

Constructor & Destructor Documentation

template<class NORM >
LatBuilder::Norm::Normalizer< LatType::EMBEDDED, NORM >::Normalizer ( Norm  norm)
normNormalization function.

Member Function Documentation

template<class NORM >
RealVector LatBuilder::Norm::Normalizer< LatType::EMBEDDED, NORM >::operator() ( const MeritValue &  merit,
const LatDef lat 
) const

Normalizes the values in merit.

Returns true.

References LatBuilder::LatDef< LAT >::dimension(), and LatBuilder::LatDef< LAT >::sizeParam().

template<class NORM >
void LatBuilder::Norm::Normalizer< LatType::EMBEDDED, NORM >::setWeights ( RealVector  levelWeights)

Sets the per-level weights.

levelWeightsPer-level weights.
The per-level weights \(c_m\) for \(m=1,\dots,M\) are expected to satisfy \(\sum_{m=0}^M c_m \leq 1\).

The documentation for this class was generated from the following file: