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TestU01

A Software Library in ANSI C

for Empirical Testing of Random Number Generators

User’s guide, compact version

Pierre L’Ecuyer and Richard Simard

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal

This document describes the software library TestU01, implemented in the ANSI C lan-
guage, and offering a collection of utilities for the (empirical) statistical testing of uniform
random number generators (RNG).

The library implements several types of generators in generic form, as well as many
specific generators proposed in the literature or found in widely-used software. It provides
general implementations of the classical statistical tests for random number generators, as
well as several others proposed in the literature, and some original ones. These tests can be
applied to the generators predefined in the library and to user-defined generators. Specific
tests suites for either sequences of uniform random numbers in [0, 1] or bit sequences are also
available. Basic tools for plotting vectors of points produced by generators are provided as
well.

Additional software permits one to perform systematic studies of the interaction between
a specific test and the structure of the point sets produced by a given family of RNGs. That
is, for a given kind of test and a given class of RNGs, to determine how large should be the
sample size of the test, as a function of the generator’s period length, before the generator
starts to fail the test systematically.



Copyright

Copyright c© 2002 by Pierre L’Ecuyer, Université de Montréal.
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Chapter 1

INTRODUCTION

1.1 Design and testing of random number generators

Random numbers generators (RNGs) are small computer programs whose purpose is to pro-
duce sequences of numbers that seem to behave as if they were generated randomly from a
specified probability distribution. These numbers are sometimes called pseudorandom num-
bers, to underline the fact that they are not truly random. Here, we just call them random
numbers, with the usual (slight) abuse of language. These RNGs are crucial ingredients for
a whole range of computer usages, such as statistical experiments, simulation of stochastic
systems, numerical analysis, probabilistic algorithms, cryptology, secure communications,
computer games, and gambling machines, to name a few.

The numbers must be generated quickly and easily by a computer program that is small,
simple, and deterministic, except for its initial state which can be selected at random. In
some cases, certain parameters of the generator are also selected at random, and can be
viewed as part of the state. The quality criteria for an RNG may depend on the application.
For simulation, one usually asks for speed, small memory requirement, and good statisti-
cal properties. For cryptology-related applications and for gambling machines in casinos,
unpredictability is a crucial requirement for which speed can be sacrificed up to a certain
point.

RNGs should be designed and selected based on a solid theoretical analysis of their math-
ematical structure. Here, we suppose that the goal is that the successive output values of the
RNG, say u0, u1, u2, . . ., imitate independent random variables from the uniform distribution
over the interval [0, 1] (i.i.d. U [0, 1]), or over the two-element set {0, 1} (independent random
bits). In both cases (independent uniforms or random bits) we shall denote the hypothesis
of perfect behavior by H0. These two situations are strongly related, because under the i.i.d.
U [0, 1] hypothesis, any pre-specified sequence of bits (e.g., the bit sequence formed by taking
all successive bits of u0, or every second bit, or the first five bits of each ui, etc.) must be
a sequence of independent random bits. So statistical tests for bit sequences can be used
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as well (indirectly) for testing the null hypothesis in the first situation. In the remainder of
this document, unless specified otherwise, H0 refers to this first situation.

In the U [0, 1] case, H0 is equivalent to saying that for each integer t > 0, the vector
(u0, . . . , ut−1) is uniformly distributed over the t-dimensional unit cube [0, 1]t. Clearly, this
cannot be formally true, because these vectors always take their values only from the finite set
Ψt of all t-dimensional vectors of t successive values that can be produced by the generator,
from all its possible initial states (or seeds). The cardinality of this set cannot exceed the
number of admissible seeds for the RNG. Assuming that the seed is chosen at random,
vectors are actually generated over Ψt to approximate the uniform distribution over [0, 1]t.
This suggests that Ψt should be very evenly distributed over the unit cube. Theoretical
figures of merit for measuring this uniformity are discussed, e.g., in [90, 80, 93, 129, 158] and
the references given there.

In the case of a sequence of random bits, the null hypothesis H0 cannot be formally true
as soon as the length t of the sequence exceeds the number b of bits in the generator’s state,
for the number of distinct sequences of bits that can be produced cannot exceed 2b. For
b < t, the fraction of all sequences that can be visited is at most 2b−t. The goal, then, is to
make sure that those sequences that can be visited are “uniformly scattered” in the set of
all 2t possible sequences, and perhaps hard to distinguish.

Cryptologists use different quality criteria for RNGs. Their main concern is unpredictabil-
ity of the forthcoming numbers. Their theoretical analysis of RNGs is usually asymptotic,
in the framework of computational complexity theory [66, 69].

Once an RNG has been designed and implemented, based on some mathematical analysis
of its structure, it is usually submitted to empirical statistical tests that try to detect sta-
tistical deficiencies by looking for empirical evidence against the hypothesis H0 introduced
previously. A test is defined by a test statistic Y , which is a function of a finite number
of un’s (or a finite number of bits, in the case of bit generators), whose distribution under
H0 is known (sometimes approximately). The number of different tests that can be defined
is infinite and these different tests detect different problems with the RNGs. There is no
universal test or battery of tests that can guarantee, when passed, that a given generator is
fully reliable for all kinds of simulations. Passing many tests improves one’s confidence in
the RNG, although it never proves that the RNG is foolproof. In fact, no RNG can pass
every conceivable statistical test. One could say that a bad RNG is one that fails simple
tests, and a good RNG is one that fails only very complicated tests that are extremely hard
to find or impractical to run.

Ideally, Y should mimic the random variable of practical interest in such a way that a bad
structural interference between the RNG and the problem will show up in the test. But this
is rarely practical. This cannot be done, for example, for testing RNGs for general-purpose
software packages.

Experience with empirical testing tells us that RNGs with very long periods, good struc-
ture of their set Ψt, and based on recurrences that are not too simplistic, pass most reasonable
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tests, whereas RNGs with short periods or bad structures are usually easy to crack by stan-
dard statistical tests. The simple structure that makes certain classes of generators very
fast is also (often) the source of their major statistical deficiencies, which sometimes lead to
totally wrong simulation results [13, 96, 87, 93, 83, 37, 160]. Practical tools for detecting
these deficiencies are needed. Offering a rich variety of empirical tests for doing that is the
purpose of the TestU01 library.

Some authors suggest that statistical tests should be used to identify and discard what
they call bad subsequences from the output sequence of random number generators. We do
not believe that this is a good idea. Such surgical procedures that cut out particular subse-
quences based on statistical test results would tend to remove some of the natural variability
in the sequence, yielding a sequence that may lack some of the randomness properties of
typical random sequences. Typically, when a generator fails a test decisively (e.g., with a
significance level or p-value less than 10−15, for example), it fails in pretty much the same
way for all its subsequences of a given length. This is because failure typically depends on
the structure of the point set Ψt. There are exceptions, but they are not frequent. Moreover,
when a generator starts failing a test decisively, the p-value of the test usually converges to
0 or 1 exponentially fast as a function of the sample size when the sample size is increased
further.

1.2 Organization of the library

The software tools of TestU01 are organized in four classes of modules: those implementing
RNGs, those implementing statistical tests, those implementing pre-defined batteries of tests,
and those implementing tools for applying tests to entire families of generators. The names
of the modules in those four classes start with the letters u, s, b, and f, respectively, and we
shall refer to them as the u, s, b, and f modules. The name of every public identifier (type,
variable, function, . . . ) is prefixed by the name of the module to which it belongs. Chapters
2 to 5 of this guide describe these four classes of modules and give some examples. Some of
these modules use definitions and functions from the ANSI C libraries MyLib and ProbDist
[92, 94], also developed in our laboratory. Several platform-dependent switches are collected
in module gdef of MyLib. They must be set to appropriate values, compatible with the
environment in which TestU01 is running (see the installation notes, in file README).

1.2.1 The generator implementations

The module unif01 provides the basic tools for defining and manipulating uniform RNGs.
It contains the type unif01_Gen, which implements the definition of an arbitrary RNG
object. Every RNG intrinsic to this package is of this type. Functions are also available to
write the current state of a generator, to filter its output in different ways (e.g., combining
successive values in the sequence to produce an output with more bits of precision, or taking
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non-successive values, or selecting only specific bits from the output, etc.), to combine two
or more generators and to test the speed of different generators.

One can create an arbitrary number of RNGs of a given kind or of different kinds in the
same program, with the exception of a few specific RNG’s that were programmed directly in C
by their authors, and which use global variables. For the latter, only one copy of a particular
generator can be in use at any given time, and this is indicated in the documentation of
these specific RNG’s. For example, one could use 3 LCGs with different parameters in the
same program; each has its own private set of variables that does not interfere with the state
or the parameters of the other two. Additional kinds of generators can be defined by the
user if needed, by implementing functions that construct objects of type unif01_Gen.

The other u modules implement RNGs and offer functions of the form u..._Create...

that return a generator object which can be used as a source of random numbers, and to
which tests can be applied. A dummy generator that just reads numbers from a file, either
in text or in binary format, is also available in module ufile. There are functions in module
unif01 that makes it very easy for the user to test his own generator or an external generator
that is not pre-programmed in TestU01.

It is important to underline that most of the RNG implementations given here are not
intended for direct use in simulation or other similar purposes. Other RNG packages, based
on robust generators and with multiple streams and other convenient facilities, have been
designed for that [84, 95]. The purpose of the RNG implementations provided here is essen-
tially for empirical testing and experimentation with variants, combinations, etc.

1.2.2 The statistical tests

The statistical tests are implemented in the s modules, whose names start by s. They all test
one of the two null hypotheses H0 defined previously, using different test statistics. To apply
a test to a specific generator, the generator must first be created by the appropriate Create

function in a u module, then it must be passed as a parameter to the function implementing
the appropriate test. The test results are printed automatically to the standard output, with
a level of detail that can be selected by the user (see module swrite).

It is also possible to recover information about what has happened in the tests, via data
structures specific to each type of test. These data stuctures, if they are to be used outside
of a test, must always be created by calling the appropriate s..._Create... function.
They are described only in the detailed version of this user’s guide. This could be used,
for example, to examine or post-process the results of a test. There are also a few public
functions that do not appear even in the detailed version of this guide. They are hidden
since they will be useful only when developing new tests or modifying existing ones.

The testing procedures use several functions from the library ProbDist [94]. In particular,
they use statcoll from that library to collect statistical observations, and gofw to apply
the goodness-of-fit (GOF) tests.

The module scatter does not apply statistical tests per se, but permits one to draw
scatter plots for vectors of points returned by a generator.
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1.2.3 Batteries of tests

Many users find it convenient to have predefined suites (or batteries) of more or less standard
statistical tests, with fixed parameters, that can be applied to a given RNG. Different types
of tests should be included in such a battery, in order to detect different types of weaknesses
in a given generator.

A number of predefined batteries of tests, some oriented towards sequences of uniform
floating-point numbers in the interval [0, 1), others towards sequences of bits, are available in
TestU01. There are small batteries, that run quickly, and larger (more stringent) batteries
that take longer to run. These batteries are implemented in the b modules.

1.2.4 Tools for testing families of generators

The f modules provide a set of tools, built on top of the modules that implement the
generator families and the tests, designed to perform systematic studies of the interaction
between certain types of tests and the structure of the point sets produced by given families
of RNGs. Roughly, the idea is to see at which sample size n0 the test starts to reject the
RNG decisively, as a function of its period length ρ. In experiments already performed with
certain classes of generators and specific tests [90, 87, 93], the results were often surprisingly
regular, in the sense that a regression model of the form log n0 = a log ρ + ε, where a is a
constant and ε a small noise, fits very well.

1.3 History and implementation notes

TestU01 started as a Pascal program implementing the tests suggested in the 1981 edition
of volume 2 of “The Art of Computer Programming” [64]. This was around 1985. Three
or four years later, a Modula-2 implementation was made, in the form of a library with a
modular design. Other tests were added, as well as some generators implemented in generic
form. Between 1990 and 2001, new generators and new tests were added regularly to the
library and a detailed user’s guide (in french) was kept up to date. The f modules, which
contain tools for testing entire families of generators, were introduced in 1997, while the
first author was on sabbatical at the University of Salzburg, Austria. In 2001 and 2002, we
partially redesigned the library, translated it in the C language, and translated the user’s
guide in english.

These preliminary versions of the library were used for several articles (co)authored by
P. L’Ecuyer, starting from his 1986 paper where he first proposed a combined LCG [71], and
including [72, 74, 84, 78, 90, 96, 79, 91, 87, 93, 89, 83].

5



1.4 Other software for testing RNGs

Another well-known public-domain testing package for RNGs is DIEHARD [106]. It contains
a large number of statistical tests. However, it has some drawbacks and limitations. Firstly,
the sequence of tests to be applied to any generator, as well as the parameters of these tests
(sample size, etc.) are fixed in the package. The sample sizes are moderate; all these tests
run in a few seconds of CPU time on a desktop computer. For example, on a PC with an
Athlon XP 2100+ processor at 1733 MHz and running Linux, the entire series of tests take
approximately 12 seconds to run. Secondly, the package requires that the random numbers
to be tested are 32-bit integers, placed in a huge file in binary format. This file is passed to
the testing procedures. This setup is not always convenient. Many RNGs produce numbers
with less than 32 bits of resolution (e.g., 31 bits is frequent) and DIEHARD does not care
for that. TestU01 is more flexible on all these aspects.

The SPRNG library [120] is another public-domain software that implements the classical
tests for RNGs given in [66], plus a few others. The National Institute of Standards and
Technology (NIST), in the USA, has implemented a test suite (16 tests) for RNGs, mainly for
the testing and certification of RNGs used in cryptographic applications (see [152] and http:

//csrc.nist.gov/rng/). The ENT test program (http://www.fourmilab.ch/random/)
implements a few elementary tests. The Information Security Research Center, in Australia,
offers a commercial testing package called Crypt-X, which contains a test suite designed
for stream ciphers, block ciphers, and key generators used in cryptology (see http://www.

isrc.qut.edu.au/resource/cryptx/). The GNU scientific library gsl, currently under
development (see http://sources.redhat.com/gsl/ref/gsl-ref_10.html), implements
a large set of well-tested RNGs, but so far no statistical test per se.
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Chapter 2

UNIFORM GENERATORS

This chapter contains a description of various uniform generators already programmed in
this library and which were proposed by various authors over the past several years, as well
as tools for managing and implementing additional types of generators. Related generators
are regrouped in the same module. For example, the linear congruential generators (LCGs)
are in module ulcg, the multiple recursive generators (MRGs) are in umrg, the inversive
generators in uinv, the cubic generators in ucubic, etc. We emphasize that the generators
provided here are not all recommendable; in fact, most of them are not.

The module unif01 contains the basic utilities for defining, manipulating, filtering, com-
bining, and timing generators. Each generator must be implemented as an object of type
unif01_Gen. To implement one’s own generator, one should create such an object and define
all its fields. For each generator, the structure unif01_Gen must contain a function GetU01

that returns values in the interval [0, 1) and a function GetBits that returns a block of 32 bits.
Most of the tests in the s modules call the generators to be tested only indirectly, through the
use of the interface functions unif01_StripD, unif01_StripL and unif01_StripB. These
functions drop the r most significant bits of each random number generated and returns a
number built out of the remaining bits.

It is also possible to test one’s own or an external generator (that is, a generator that is not
predefined in TestU01) very easily with the help of the functions unif01_CreateExternGen01
and unif01_CreateExternGenBits (see page 15 of this guide), as long as this generator is
programmed in C.

Figure 2.1 gives simple examples of how to use predefined generators. The program
creates a LCG with modulus m = 231− 1, multiplier a = 16807, and initial state s = 12345,
generates and adds 100 uniforms produced by this generator, prints the sum, and deletes the
generator. To illustrate the fact that there are different ways of getting the uniforms from
the generator, we have generated the first 50 by calling the GetU01 function and the next
50 via unif01_StripD. These two methods are equivalent. The program then instantiates
the generator lfsr113 available in module ulec, with the vector (12345, ..., 12345) as initial
seed, generates and prints five integers in the range {0, . . . , 210 − 1} (i.e., 10-bit integers)
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obtained by taking five successive output values from the generator, stripping out the four
most significant bits from each value, and retaining the next 10 bits.

Other examples on how to use the facilities of module unif01 are given at the end of its
description.

#include "unif01.h"
#include "ulcg.h"
#include "ulec.h"
#include <stdio.h>

int main (void)
{

int i;
double x;
unsigned long z;
unif01_Gen *gen;

gen = ulcg_CreateLCG (2147483647, 16807, 0, 12345);
x = 0.0;
for (i = 0; i < 50; i++)

x += gen->GetU01(gen->param, gen->state);
for (i = 0; i < 50; i++)

x += unif01_StripD (gen, 0);
printf ("Sum = %14.10f\n\n", x);
ulcg_DeleteGen (gen);

gen = ulec_Createlfsr113 (12345, 12345, 12345, 12345);
for (i = 0; i < 5; i++) {

z = unif01_StripB (gen, 4, 10);
printf ("%10lu\n", z);
}

ulec_DeleteGen (gen);
return 0;

}

Figure 2.1: Using pre-programmed generators
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unif01

This module offers basic tools for defining, manipulating, and transforming uniform ran-
dom number generators to which tests are to be applied or which could be used for other
purposes. Each generator is implemented as a structure of type unif01_Gen. Several pre-
defined generators are available in the u modules. Each such generator must be created by
the appropriate ...Create... function before being used, and should be deleted by the
corresponding ...Delete... function to free the memory used by the generator when it is
no longer needed. One can create and use simultaneously any number of generators. These
generators are usually passed to functions as pointers to objects of type unif01_Gen.

One may call an external generator for testing using the functions in this module. See
Figure 2.2 for an example. One may also implement one’s own generator, by creating a
structure of type unif01_Gen and defining all its fields properly. See Figure 2.5 for an
illustration.

Each implemented generator returns either a floating-point number in [0, 1) (via its func-
tion GetU01) or a block of 32 bits (via its function GetBits). Ideally, these should follow
the uniform distribution (0, 1) and {0, . . . , 232 − 1}, respectively. Most of the tests in the s

modules actually call the generator to be tested only indirectly through the use of one of the
interface functions unif01_StripD, unif01_StripL and unif01_StripB. These functions
drop the r most significant bits of each random number and return a number built out of
the remaining bits.

Functions are also provided for adding one or many output filters to a given generator.
These functions create another generator object which implements a mechanism that au-
tomatically transforms the output values of the original generator in a specified way. One
can also combine the outputs of several generators in different ways. By using the output
of several generators or several substreams of the same generator in a round-robin way, one
can test the quality of these as examples of parallel generators. Finally, tools are provided
for measuring the speed of generators and adding their output values (for testing purposes).

#include "gdef.h"

Basic types

typedef struct {
void *state;
void *param;
char *name;
double (*GetU01) (void *param, void *state);
unsigned long (*GetBits) (void *param, void *state);
void (*Write) (void *state);

} unif01_Gen;

Generic random number generator. The function GetU01 returns a floating-point number in
[0, 1) while GetBits returns a block of 32 bits. If the generator delivers less than 32 bits, these
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bits are left shifted so that the most significant bits are the relevant ones. The variable state
keeps the current state of the generator and param is the set of specific parameters used in
computing the next random number. The function Write will write the current state of the
generator. The string name describes the current generator, its parameters, and its initial state.
In the description of the generators in the u modules, one indicates how the GetU01 function
gets its value from the generator’s recurrence; it is always understood that the GetBits function
is equivalent to 232 GetU01.

Environment variables

extern boolean unif01_WrLongStateFlag;

For generators whose state is a large array, determines whether the state will be written out in
full (TRUE) or not (FALSE) in the printouts. The default value is FALSE.

Basic functions

double unif01_StripD (unif01_Gen *gen, int r);

Makes one call to the generator gen, drops the r most significant bits, left-shift the others by
r positions, and returns the result, which is a floating-point number in [0, 1). More specifically,
returns 2ru mod 1, where u is the output of gen.

long unif01_StripL (unif01_Gen *gen, int r, long d);

Similar to unif01_StripD, but generates an integer “uniformly” over the set {0, . . . , d− 1}, by
using the most significant bits of the output of gen after having dropped the first r bits. More
specifically, returns bd(2ru mod 1)c, where u is the output of gen.

unsigned long unif01_StripB (unif01_Gen *gen, int r, int s);

Calls the generator gen, drops the r most significant bits, and returns the s following bits as an
integer in the set {0, . . . , 2s − 1}.

void unif01_WriteNameGen (unif01_Gen *gen);

Writes the character string gen->name that describes the generator.

void unif01_WriteState (unif01_Gen *gen);

Writes the current state of generator gen.
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void unif01_WrLongStateDef (void);

Dummy function used when the state of the current generator is a large array and we do not want
to write the full state. Writes the message “Not shown here ... takes too much space”.

unif01_Gen * unif01_CreateDummyGen (void);

Creates a dummy generator, which does nothing and always returns zero. It can be used for
instance to measure the overhead of function calls when comparing generator’s speeds (see the
timing tools below).

void unif01_DeleteDummyGen (unif01_Gen *gen);

Frees the dynamic memory used by the dummy generator above.

Output filters

The following describes some filters that can be added to transform the output of a given
generator. In each case, a new generator object is created that will effectively apply the filter
to the original generator. One may apply more than one filter at a time on a given generator
(for example, one may apply the Double, the Bias, the Trunc and the Lac filters on top of
one another). It suffices to create the appropriate filters as described below. The resulting
filtered generator(s) will call the original generator behind the scenes. Thus the state of the
original generator will evolve as usual, even though it is not called directly.

The different filters applied on an original generator are not independent but are related
as the elements of a stack. When they are no longer in use, they must be deleted in the
reverse order of their creation, the original generator being the last one of this group to be
deleted. Figure 2.8 illustrates how these facilities can be used.

unif01_Gen * unif01_CreateDoubleGen (unif01_Gen *gen, int s);

Given a generator gen, this function creates and returns a generator with increased precision,
such that every call to this new generator corresponds to two successive calls to the original
generator. The method GetU01 of this doubled generator returns (U1 + U2/2s) mod 1, where
U1 and U2 are the results of two successive calls to the method GetU01 of gen. If the current
generator has 31 bits of precision, for example, then one can obtain 53 bits of precision from
GetU01 by creating this new generator with s between 22 and 31.

unif01_Gen * unif01_CreateDoubleGen2 (unif01_Gen *gen, double h);

A more general version of unif01_CreateDoubleGen where the method GetU01 of the double
generator returns (U1 + hU2) mod 1. Restriction: 0 < h < 1.
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unif01_Gen * unif01_CreateLacGen (unif01_Gen *gen, int k, long I[]);

Given an original generator gen, this function creates and returns a generator involving lacunary
indices, such that successive calls to this new generator will no longer provide successive values
from the original generator, but rather selected values as specified by the table I[0..k-1], in
a circular fashion. More specifically, if u0, u1, u2, . . . is the sequence produced by the original
gen, if the table I[0..k-1] contains the non-negative integers i0, . . . ik−1 (in increasing order),
and if we put L = ik−1 + 1, then the output sequence of the new generator will be:

ui0 , ui1 , . . . , uik−1
, uL+i0 , uL+i1 , . . . , uL+ik−1

, u2L+i0 , u2L+i1 , . . . .

For example, if k = 3 and I = {0, 3, 5}, the output sequence will be the numbers

u0, u3, u5, u6, u9, u11, u12, . . .

of the original generator. To obtain every s-th number produced by the original generator for
example (a decimated sequence), one should take k = 1 and I = {s− 1}.

unif01_Gen * unif01_CreateLuxGen (unif01_Gen *gen, int k, int L);

Given an original generator gen, this function creates and returns a new generator giving the
output of the original generator with luxury level L: out of every group of L random numbers,
the first k are kept and the next L− k are skipped.

unif01_Gen * unif01_CreateBiasGen (unif01_Gen *gen, double a, double p);

Given an original generator gen, this function creates and returns a new generator giving a biased
output of the original generator. The output is biased in such a way that the density becomes
constant with total probability p over the interval [0, a), and constant with total probability
1− p over [a, 1) (the two constant densities are different). For example, by choosing p = 1 and
a = 0.5, all the random numbers generated by GetU01 will fall on the interval [0, 0.5). This
filter can be used, for example, to study the power of certain statistical tests. Restrictions:
0 < a < 1 and 0 ≤ p ≤ 1.

unif01_Gen * unif01_CreateTruncGen (unif01_Gen *gen, int s);

Given an original generator gen, this function creates and returns a new generator giving the
output of the original generator truncated to its s most significant bits. Restriction: s ≤ 32.

unif01_Gen * unif01_CreateBitBlockGen (unif01_Gen *gen, int r, int s,
int w);

Consider a group of v ≤ 32 successive 32-bit integers outputted by generator gen. For each of
these, drop the r most significant bits and keep the s following bits numbered bi1, bi2, . . . , bis,
starting with the most significant, for 1 ≤ i ≤ v. Make with all these a v × s matrix of bits,
say B. The generator returned by this function is a filter that builds new 32-bit integers from
v × w submatrices of B. The number of columns of the submatrix w must be a power of 2 no
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larger than 32 and it must be ≤ s. If w does not divide s exactly, the last submatrix of B will
have less than w columns and will be disregarded.

If the stream of bits thus obtained from gen is

b11, b12, . . . , b1s, b21, b22, . . . , b2s, . . . , bv1, bv2, . . . , bvs, . . .

then the new integers returned by the filter will be 32-bit integers taken from the rearranged
stream of bits so that the first new number is (its most significant bit being given first)

b11, b12, . . . , b1w, b21, b22, . . . , b2w, . . . , bv1, bv2, . . . , bvw,

the second new number is made of the bits (its most significant bit first)

b1(w+1), b1(w+2), . . . , b1(2w), b2(w+1), b2(w+2), . . . , b2(2w), . . . , bv(w+1), bv(w+2), . . . , bv(2w),

and so on.

The following examples illustrates how the filter works. If r = 0 and w = s = 32, then the
filter has no effect, the new integers being the same as those outputted by gen. If r = 0 and
w = s = 1, then the filter will return integers made only from the most significant bit of the
original integers, all other bits being dropped. If r = 0, w = 1 and s = 32, then the filter
will return integers made from the columns of B, i.e., since the rows of B are made of the
original integers, the filter will return the columns of B as the new integers. Restrictions: r ≥ 0,
0 < s ≤ 32 and w in {1, 2, 4, 8, 16, 32}.

void unif01_DeleteDoubleGen (unif01_Gen *gen);
void unif01_DeleteLacGen (unif01_Gen *gen);
void unif01_DeleteLuxGen (unif01_Gen *gen);
void unif01_DeleteBiasGen (unif01_Gen *gen);
void unif01_DeleteTruncGen (unif01_Gen *gen);
void unif01_DeleteBitBlockGen (unif01_Gen *gen);

Frees the memory used by the generator created by the corresponding Create functions above.

Combining generators

These functions permit one to define the combination of two, three or more generators.
The resulting generator calls the component generators behind the scenes, so it changes their
state. The component generators must not be destroyed as long as the combination generator
is in use. One can obtain the combinations of more than three generators by combining the
generators obtained from combinations of two or three generators.

unif01_Gen * unif01_CreateCombAdd2 (unif01_Gen *gen1, unif01_Gen *gen2,
char *name);

This function creates and returns a generator whose output is the addition of the outputs
modulo 1 of the method GetU01 of the two generators gen1 and gen2. The character string
name may be printed in reports to identify this new combined generator.

13



unif01_Gen * unif01_CreateCombAdd3 (unif01_Gen *gen1, unif01_Gen *gen2,
unif01_Gen *gen3, char *name);

Same as unif01_CreateCombAdd2, except that the returned generator is the combination (the
addition of the outputs modulo 1 of the method GetU01) of the three generators gen1, gen2
and gen3.

unif01_Gen * unif01_CreateCombXor2 (unif01_Gen *gen1, unif01_Gen *gen2,
char *name);

This function creates and returns a generator whose output is the bitwise exclusive-or (XOR)
of the outputs of the two generators gen1 and gen2. The character string name may be printed
in reports to identify this combined generator.

unif01_Gen * unif01_CreateCombXor3 (unif01_Gen *gen1, unif01_Gen *gen2,
unif01_Gen *gen3, char *name);

Same as unif01_CreateCombXor2, except that the returned generator is the combination of the
three generators gen1, gen2 and gen3.

void unif01_DeleteCombGen (unif01_Gen *gen);

Frees the memory used by one of the combination generators returned by the Create functions
above, but does not delete any of its component generators.

Parallel generators

The following functions allow the joining of the output of several generators or of different
substreams of the same generator into a single stream of random numbers. This can be
used to test for apparent correlations between the output of several generators or several
substreams used in parallel. For example, one may want to choose seeds that are far separated
for the same generator, while making sure that such seed choice is statistically valid and does
not introduce unwanted correlation between the substreams thus defined.

unif01_Gen * unif01_CreateParallelGen (int k, unif01_Gen *gen[], int L);

Creates and returns a generator whose output is obtained in a round-robin way L numbers at
a time from each of the k generators gen[i] as follows: the first L numbers are generated from
gen[0], the next L numbers are generated from gen[1], and so on until L numbers have been
generated from gen[k-1], after which, this whole process is repeated. It is important that none
of the generators gen[i] be destroyed as long as the parallel generator is in use.

void unif01_DeleteParallelGen (unif01_Gen *gen);

Frees the memory allocated by the parallel generator returned by the Create function above,
but does not delete any of its component generators, which is the responsibility of the program
that created them.
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External generators

Although TestU01 implements many generators both in generic and in specific forms, it is
not possible to implement all those that are in existence because there are just too many and
new ones are proposed regularly. The typical user would like to test his preferred generator
with as little complications as possible. The functions below allows one to do just that. As
long as the generator is programmed in C, one has but to pass the function implementing
the generator to one of the functions below and call some of the tests available in TestU01.
It is the responsibility of the user to ensure that his generator does not violate the conditions
described in the functions below. For the call in unif01_CreateExternGen01, his generator
must return floating-point numbers in [0, 1). For the calls in unif01_CreateExternGenBitsL

and unif01_CreateExternGenBits, his generator must return an integer in the interval
[0, 232 − 1]. If these conditions are violated, the results of the tests in TestU01 are unpre-
dictable.

unif01_Gen *unif01_CreateExternGen01 (char *name, double (*gen01)(void));

Implements a pre-existing external generator gen01 that is not part of TestU01. It must be a
C function taking no argument and returning a double in the interval [0, 1). Parameter name
is the name of the generator. No more than one generator of this type can be in use at a time.

unif01_Gen *unif01_CreateExternGenBits (char *name,
unsigned int (*genB)(void));

Implements a pre-existing external generator genB that is not part of TestU01. It must be a C
function taking no argument and returning an integer in the interval [0, 232−1]. If the generator
delivers less than 32 bits of resolution, then these bits must be left shifted so that the most
significant bit is bit 31 (counting from 0). Parameter name is the name of the generator. No
more than one generator of this type can be in use at a time.

unif01_Gen *unif01_CreateExternGenBitsL (char *name,
unsigned long (*genB)(void));

Similar to unif01_CreateExternGenBits, but with unsigned long instead of unsigned int.
The generator genB must also return an integer in the interval [0, 232 − 1].

void unif01_DeleteExternGen01 (unif01_Gen * gen);
void unif01_DeleteExternGenBits (unif01_Gen * gen);
void unif01_DeleteExternGenBitsL (unif01_Gen * gen);

Frees the memory used by the generator created by the corresponding Create functions above.

As an example, Figure 2.2 shows how to apply SmallCrush, a small predefined battery
of tests (described on page 143) to the generators MRG32k3a and xorshift, whose code is
shown in Figures 2.3 and 2.4. One must compile and link the two external files with the
main program and the TestU01 library. The generator MRG32k3a returns numbers in (0, 1)
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and was proposed by L’Ecuyer in [80]. The generator xorshift returns 32-bit integers and
was proposed by Marsaglia in [111, page 4].

#include "unif01.h"
#include "bbattery.h"

unsigned int xorshift (void);
double MRG32k3a (void);

int main (void)
{

unif01_Gen *gen;

gen = unif01_CreateExternGen01 ("MRG32k3a", MRG32k3a);
bbattery_SmallCrush (gen);
unif01_DeleteExternGen01 (gen);

gen = unif01_CreateExternGenBits ("xorshift", xorshift);
bbattery_SmallCrush (gen);
unif01_DeleteExternGenBits (gen);

return 0;
}

Figure 2.2: Example of a program to test two external generators

Timing devices

typedef struct {
unif01_Gen *gen;
long n;
double time;
double mean;
boolean fU01;
} unif01_TimerRec;

Structure to memorize the results of speed and sum tests on a given generator. Here, gen is
the generator, n is the number of calls made to the generator, time is the total CPU time in
seconds, and mean is the mean of the n output values of the generator. If fU01 is TRUE, the
function GetU01 of gen is called, otherwise the function GetBits is called.

void unif01_TimerGen (unif01_Gen *gen, unif01_TimerRec *timer, long n,
boolean fU01);

This function computes the CPU time needed to generate n random numbers with the generator
gen, and returns the result in timer. If fU01 is TRUE, the random numbers will be generated
by the method GetU01 of gen, otherwise by the method GetBits.
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#define norm 2.328306549295728e-10
#define m1 4294967087.0
#define m2 4294944443.0
#define a12 1403580.0
#define a13n 810728.0
#define a21 527612.0
#define a23n 1370589.0

static double s10 = 12345, s11 = 12345, s12 = 123,
s20 = 12345, s21 = 12345, s22 = 123;

double MRG32k3a (void)
{

long k;
double p1, p2;
/* Component 1 */
p1 = a12 * s11 - a13n * s10;
k = p1 / m1; p1 -= k * m1; if (p1 < 0.0) p1 += m1;
s10 = s11; s11 = s12; s12 = p1;

/* Component 2 */
p2 = a21 * s22 - a23n * s20;
k = p2 / m2; p2 -= k * m2; if (p2 < 0.0) p2 += m2;
s20 = s21; s21 = s22; s22 = p2;

/* Combination */
if (p1 <= p2) return ((p1 - p2 + m1) * norm);
else return ((p1 - p2) * norm);

}

Figure 2.3: External function for MRG32k3a.

static unsigned int y = 2463534242U;

unsigned int xorshift (void)
{

y ^= (y << 13);
y ^= (y >> 17);
return y ^= (y << 5);

}

Figure 2.4: External function for xorshift.
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void unif01_TimerSumGen (unif01_Gen *gen, unif01_TimerRec *timer, long n,
boolean fU01);

Same as unif01_TimerGen, but also adds the n random numbers and saves their mean in
timer->mean.

void unif01_WriteTimerRec (unif01_TimerRec *timer);

Prints the results contained in timer, with some information about the generator and the
current machine. One should make sure that the generator gen in timer has not been deleted
when calling this function.

void unif01_TimerGenWr (unif01_Gen *gen, long n, boolean fU01);

Equivalent to calling unif_TimerGen followed by unif01_WriteTimerRec.

void unif01_TimerSumGenWr (unif01_Gen *gen, long n, boolean fU01);

Equivalent to calling unif_TimerSumGen followed by unif01_WriteTimerRec.

Examples

We now provide some examples of how to use the facilities of unif01. Figure 2.5 gives an
example of how to implement one’s own generator, using all the paraphernalia of TestU01.
This is specially useful when one wants to implement a generator in generic form with one
or more parameters. This is a simple LCG with hardcoded parameters m = 231 − 1 and
a = 16807. The function My16807_U01 will advance the generator’s state by one step and
return a U(0, 1) random number U each time it is called, whereas My16807_Bits will return
the 32 most significant bits in the binary representation of U . The function CreateMy16807

allocates the memory for the corresponding unif01_Gen structure and initializes all its fields.

Figure 2.6 shows how to use the timing facilities. The main program first sets the
generator gen to an LCG with modulus 231 − 1, multiplier a = 16807, and initial state
12345, implemented in floating point. (This generator is well known, but certainly not
to be recommended; its period length of 231 − 2 is much too small.) The program calls
unif01_TimerSumGenWr which generates 10 million random numbers in [0, 1), computes
their mean, and prints the CPU time needed to do that. Next, the program deletes this
unif01_Gen object and creates a new one, which is actually a user-defined implementation
of the same LCG, taken from the home-made module my16807 whose code is shown in Fig-
ure 2.5. In this implementation, the parameters have been placed as constants directly into
the code. Ten million random numbers are generated with this alternative implementation,
and the average and CPU time are printed. The same procedure is repeated for two addi-
tional predefined generators taken from modules ulec. Figure 2.7 shows the results of this
program, run on a 2106 MHz computer running Linux, and compiled with gcc -O2.
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#include "my16807.h"
#include "unif01.h"
#include "util.h"
#include "addstr.h"
#include <string.h>

typedef struct { double S; } My16807_state;

static double My16807_U01 (void *par, void *sta)
{

My16807_state *state = sta;
long k;
state->S *= 16807.0;
k = state->S / 2147483647.0;
state->S -= k * 2147483647.0;
return (state->S * 4.656612875245797E-10);

}

static unsigned long My16807_Bits (void *par, void *sta)
{

return (unsigned long) (My16807_U01 (par, sta) * 4294967296.0);
}

static void WrMy16807 (void *sta)
{

My16807_state *state = sta;
printf (" S = %.0f\n", state->S);

}

unif01_Gen *CreateMy16807 (int s)
{

unif01_Gen *gen;
My16807_state *state;
size_t leng;
char name[60];

gen = util_Malloc (sizeof (unif01_Gen));
gen->state = state = util_Malloc (sizeof (My16807_state));
state->S = s;
gen->param = NULL;
gen->Write = WrMy16807;
gen->GetU01 = My16807_U01;
gen->GetBits = My16807_Bits;

strcpy (name, "My LCG implementation for a = 16807:");
addstr_Int (name, " s = ", s);
leng = strlen (name);
gen->name = util_Calloc (leng + 1, sizeof (char));
strncpy (gen->name, name, leng);
return gen;

}

void DeleteMy16807 (unif01_Gen * gen)
{

gen->state = util_Free (gen->state);
gen->name = util_Free (gen->name);
util_Free (gen);

}

Figure 2.5: A user-defined generator, in file my16807.c.
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#include "unif01.h"
#include "ulcg.h"
#include "ulec.h"
#include "my16807.h"
#include <stdio.h>

int main (void)
{

unif01_Gen *gen;
double x = 0.0;
int i;

gen = ulcg_CreateLCGFloat (2147483647, 16807, 0, 12345);
unif01_TimerSumGenWr (gen, 10000000, TRUE);
ulcg_DeleteGen (gen);

gen = CreateMy16807 (12345);
unif01_TimerSumGenWr (gen, 10000000, TRUE);
DeleteMy16807 (gen);

gen = ulec_CreateMRG32k3a (123., 123., 123., 123., 123., 123.);
unif01_TimerSumGenWr (gen, 10000000, TRUE);
ulec_DeleteGen (gen);

gen = ulec_Createlfsr113 (12345, 12345, 12345, 12345);
unif01_TimerSumGenWr (gen, 10000000, TRUE);
for (i = 0; i < 100; i++)

x += unif01_StripD (gen, 0);
printf ("Sum = %14.10f\n", x);
ulec_DeleteGen (gen);

return 0;
}

Figure 2.6: Example of a program creating and timing generators.
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------------- Results of speed test ---------------

Host:
Generator: ulcg_CreateLCGFloat
Method: GetU01
Mean = 0.499974546727091
Number of calls: 10000000
Total CPU time: 0.34 sec

------------- Results of speed test ---------------

Host:
Generator: My LCG implementation for a = 16807
Method: GetU01
Mean = 0.499974546727091
Number of calls: 10000000
Total CPU time: 0.38 sec

------------- Results of speed test ---------------

Host:
Generator: ulec_CreateMRG32k3a
Method: GetU01
Mean = 0.500045268775809
Number of calls: 10000000
Total CPU time: 0.61 sec

------------- Results of speed test ---------------

Host:
Generator: ulec_Createlfsr113
Method: GetU01
Mean = 0.500154672454091
Number of calls: 10000000
Total CPU time: 0.15 sec

Sum = 50.6276649707

Figure 2.7: Results of the program of Figure 2.6.
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Figure 2.8 shows how to apply filters to generators and how to combine two or more
generators by addition modulo 1 or bitwise exclusive-or. The program starts by creating a
simple Tausworthe generator gen1 and it generates 20 values from it. It then deletes gen1,
creates a new copy of it with the same parameters and initial state, and applies a “lacunary
indices” filter to create a second generator gen2. The output sequence of gen2 will be (in
terms of the original sequence numbering) u3, u7, u9, u13, u17, u19, u23, . . .. Next, the program
creates a generator gen3 for which each output value is constructed from two successive
output values of gen2, generates some values from gen3 and gen2, and deletes them.

After that, the program creates another Tausworthe generator gen2 and a generator gen3
which is a combination of gen1 and gen2 by bitwise exclusive-or. It generates a few values
with gen3 and deletes all the generators.

#include "unif01.h"
#include "utaus.h"
#include <stdio.h>

int main (void)
{

unif01_Gen *gen1, *gen2, *gen3;
long I[3] = { 3, 7, 9 };
int i, n = 20;
double x;

gen1 = utaus_CreateTaus (31, 3, 12, 12345);
for (i = 0; i < n; i++)

printf ("%f\n", unif01_StripD (gen1, 0));
utaus_DeleteGen (gen1);
printf ("\n");

gen1 = utaus_CreateTaus (31, 3, 12, 12345);
gen2 = unif01_CreateLacGen (gen1, 3, I);
for (i = 0; i < n; i++)

printf ("%f\n", unif01_StripD (gen2, 0));

gen3 = unif01_CreateDoubleGen (gen2, 24);
for (i = 0; i < n; i++)

x = unif01_StripD (gen3, 0);
unif01_DeleteDoubleGen (gen3);
unif01_DeleteLacGen (gen2);

gen2 = utaus_CreateTaus (28, 7, 14, 12345);
gen3 = unif01_CreateCombXor2 (gen1, gen2, "A Combined Tausworthe Gener.");
for (i = 0; i < n; i++)

x = unif01_StripD (gen3, 0);
unif01_DeleteCombGen (gen3);
utaus_DeleteGen (gen2);
utaus_DeleteGen (gen1);
return 0;

}

Figure 2.8: Applying filters and combining generators.
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ulcg

This module implements linear congruential generators (LCGs), simple or combined, in
generic form. The simple LCG is defined by the recurrence

xi = (axi−1 + c) mod m, (2.1)

and the output at step i is ui = xi/m. Two types of combinations are implemented: the one
proposed by L’Ecuyer [72], and the one proposed by Wichmann and Hill [171]. See [97] for
details. Some of the implementations use the GNU multiprecision package GMP. The macro
USE_GMP is defined in module gdef in directory mylib.

The following table gives specific parameters taken from the literature or from widely
available software. See also [40, 81] for other LCG parameters. Parameters for combined
LCGs can be found in [72, 97, 84].

Table 2.1: Some specific (popular) LCGs

m a c Reference

224 1140671485 12820163 in Microsoft VisualBasic
231 − 1 742938285 0 [41]
231 − 1 950706376 0 [41]
231 − 1 630360016 0 [70, 134]
231 − 1 397204094 0 in SAS [149]
231 − 1 16807 0 [101, 6, 70, 133]
231 − 1 45991 0 [88]

231 65539 0 RANDU [58, 70]
231 134775813 1 in Turbo Pascal
231 1103515245 12345 rand() in BSD ANSI C
231 452807053 0 [58, URN11]
232 1099087573 0 [39]
232 4028795517 0 [39]
232 663608941 0 [58, URN13]
232 69069 0 component of original SuperDuper
232 69069 1 on VAX/VMS [58, URN22]
232 2147001325 715136305 in BCLP language

235 513 0 Apple
235 515 7261067085 [64, p.102]
1012 − 11 427419669081 0 rand() in Maple 9.5 or earlier
247 − 115 71971110957370 0 [85]
247 − 115 −10018789 0 [85]

23



m a c Reference

248 68909602460261 0 [39]
248 25214903917 11 Unix’s rand48()
248 44485709377909 0 on CRAY system [20]
259 1313 0 in NAG Fortran/C library
263 − 25 2307085864 0 [85]
264 1113 c prng at Cornell Theory Center [135]

#include "gdef.h"
#include "unif01.h"

Simple LCGs

unif01_Gen * ulcg_CreateLCG (long m, long a, long c, long s);

Initializes a LCG of the form (2.1). The initial state is x0 = s and the output at step i is xi/m.
The actual implementation depends on the values of (m,a, c). Restrictions: a, c and s must be
non-negative and less than m.

unif01_Gen * ulcg_CreateLCGFloat (long m, long a, long c, long s);

The same as ulcg_CreateLCG, except that the implementation is in floating-point arithmetic.
Valid only if the IEEE floating-point standard is respected (all integers smaller than 253 are
represented exactly as double). Restrictions : −m < a < m, 0 ≤ c < m, −m < s < m,
|am|+ c < 253, and c = 0 when a < 0.

#ifdef USE_GMP
unif01_Gen * ulcg_CreateBigLCG (char *m, char *a, char *c, char *s);

The same as ulcg_CreateLCG, but using arbitrary large integers. The integers are given as
strings of decimal digits. The implementation uses GMP. Restrictions: a, c and s non negative
and less than m.

#endif

unif01_Gen * ulcg_CreateLCGWu2 (long m, char o1, unsigned int q, char o2,
unsigned int r, long s);

Implements a LCG of the kind proposed by Wu [177], and generalized by L’Ecuyer and Simard
[91], for which the modulus and multiplier can be written as m = 2e−h and a = ±2q± 2r. The
parameters o1 and o2 can be ’+’ or ’-’; they give the sign in front of 2q and 2r, respectively.
Uses an implementation proposed in [91, 177], which uses shifts instead of multiplications. The
initial state is x0 = s and the output at step i is xi/m. We use a fast implementation with
shifts instead of multiplications, whenever possible. Restrictions: 0 < s < m, m < 231, and
the parameters must also satisfy the conditions h < 2q, h(2q − (h + 1)/2e−q) < m and h < 2r,
h(2r − (h + 1)/2e−r) < m. .
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unif01_Gen * ulcg_CreateLCGCarta (long a, long c, long s);

Same as ulcg_CreateLCG, with the additional restriction that m = 231 − 1. Uses the fast
implementation proposed by Carta [134, 9]. See also Robin Whittle’s WWW page at http:
//www.firstpr.com.au/dsp/rand31/.

unif01_Gen * ulcg_CreateLCG2e31m1HD (long a, long s);

Same as ulcg_CreateLCG, with the additional restrictions that m = 231− 1, c = 0 and 1 < a <
230. Uses the specialized implementation proposed by Hörmann et Derflinger [54].

unif01_Gen * ulcg_CreateLCG2e31 (long a, long c, long s);

Same as ulcg_CreateLCG, but with m = 231. Uses a specialized implementation.

unif01_Gen * ulcg_CreateLCG2e32 (unsigned long a, unsigned long c,
unsigned long s);

Same as ulcg_CreateLCG, but with m = 232. Uses a specialized implementation.

unif01_Gen * ulcg_CreatePow2LCG (int e, long a, long c, long s);

Implements a LCG as in ulcg_CreateLCG, but with m = 2e. Restrictions: a, c and s non
negative and smaller than m, and e ≤ 31.

#ifdef USE_LONGLONG
unif01_Gen * ulcg_CreateLCG2e48L (ulonglong a, ulonglong c, ulonglong s);

A simple LCG of the form xi+1 = (axi + c) mod 248, where x0 = s is the seed. The generator
drand48 of the SUN C library is obtained with the parameters

a = 25214903917, c = 11.

Only the 32 most significant bits are kept. Restrictions: a, c, s < 281474976710656 = 248.

unif01_Gen * ulcg_CreatePow2LCGL (int e, ulonglong a, ulonglong c,
ulonglong s);

Implements a LCG as in ulcg_CreatePow2LCG, but with e ≤ 64. Only the 32 most significant
bits are kept.

#endif

#ifdef USE_GMP
unif01_Gen * ulcg_CreateBigPow2LCG (long e, char *a, char *c, char *s);

Implements the same type of generator as ulcg_CreatePow2LCG, but using arbitrary large
integers. The integers a, c and s are given as strings of decimal digits.
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#endif

Combined LCGs

unif01_Gen * ulcg_CreateCombLEC2 (long m1, long m2, long a1, long a2,
long c1, long c2, long s1, long s2);

Combines two LCGs by the method of L’Ecuyer [72]. The first LCG has parameters (m1,
a1, c1, s1) and the second has parameters (m2, a2, c2, s2). The combination is via xi =
(si1 − si2) mod (m1 − 1), where si1 are si2 are the states of the two components at step i. The
output is ui = xi/m1 if xi 6= 0, and ui = (m1 − 1)/m1 if xi = 0. As for ulcg_CreateLCG,
the implementation depends on the parameters. The same restrictions as for ulcg_CreateLCG
apply to the two components and one must also have m1 > m2.

unif01_Gen * ulcg_CreateCombLEC2Float (long m1, long m2, long a1, long a2,
long c1, long c2, long s1, long s2);

Floating-point version of ulcg_CreateCombLEC2. Valid only if any positive integer smaller than
253 is represented exactly as a double (this holds, e.g., if the IEEE floating-point standard is
respected). Restrictions: a1m1 + c1 − a1 < 253 and a2m2 + c2 − a2 < 253.

unif01_Gen * ulcg_CreateCombLEC3 (long m1, long m2, long m3, long a1,
long a2, long a3, long c1, long c2,
long c3, long s1, long s2, long s3);

Same as ulcg_CreateCombLEC2, but combines 3 LCGs instead of 2. The combination is via
xi = (si1 − si2 + si3) mod (m1 − 1), where si1, si2 et si3 are the states of the components. One
must have m1 > m2 > m3.

unif01_Gen * ulcg_CreateCombWH2 (long m1, long m2, long a1, long a2,
long c1, long c2, long s1, long s2);

Combines two LCGs as in ulcg_CreateCombLEC2, but using the Wichmann and Hill approach
[171]: By adding modulo 1 the outputs of the two LCGs. The same restrictions apply.

unif01_Gen * ulcg_CreateCombWH2Float (long m1, long m2, long a1, long a2,
long c1, long c2, long s1, long s2);

Floating-point version of ulcg_CreateCombWH2. Valid only if the IEEE floating-point standard
is respected (all integers smaller than 253 are represented exactly as double). Restrictions:
a1m1 + c1 − a1 < 253 and a2m2 + c2 − a2 < 253.

unif01_Gen * ulcg_CreateCombWH3 (long m1, long m2, long m3, long a1,
long a2, long a3, long c1, long c2,
long c3, long s1, long s2, long s3);

Same as ulcg_CreateCombWH2, but combines three LCGs. The recent version of Excel uses
the original Wichmann-Hill combination of three small LCGs [171] for its new random number
generator (see usoft_CreateExcel2003 on page 81 of this guide).
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Clean-up functions

#ifdef USE_GMP
void ulcg_DeleteBigLCG (unif01_Gen *gen);

Frees the dynamic memory used by the BigLCG generator and allocated by the corresponding
Create function above.

void ulcg_DeleteBigPow2LCG (unif01_Gen *gen);

Frees the dynamic memory used by the BigPow2LCG generator and allocated by the correspond-
ing Create function above.

#endif

void ulcg_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called to clean up a generator object when it is no
longer in use.

Other related generators

For other specific LCGs, see also

• uwu_CreateLCGWu61a

• uwu_CreateLCGWu61b
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umrg

This module implements multiple recursive generators (MRGs), based on a linear recur-
rence of order k, modulo m:

xn = (a1xn−1 + · · ·+ akxn−k) mod m. (2.2)

and whose output is normally un = xn/m. It implements combined MRGs as well. For more
details about these generators, see for example [85, 75, 76, 80, 98, 129].

Lagged-Fibonacci generators are also implemented here. These generators are actually
MRGs only when the selected operation is addition or subtraction. Multiplicative lagged-
Fibonacci generators, for example, are not MRGs, but are implemented here nonetheless.

Some of the generators in this module use the GNU multiprecision package GMP. The
macro USE_GMP is defined in module gdef in directory mylib.

#include "gdef.h"
#include "unif01.h"

Simple MRGs

unif01_Gen * umrg_CreateMRG (long m, int k, long A[], long S[]);

Implements a MRG of the form (2.2), with (a1, . . . , ak) in A[0..(k-1)], initial state (x−1, . . . ,
x−k) in S[0..(k-1)], and output un = xn/m. Faster implementations are provided for the
special cases k = 2, 3, 5, 7 when A[0] > 0, A[k − 1] > 0, and all other A[i] = 0. Restrictions:
2 ≤ k, |ai|(m mod |ai|) < m, −m < ai < m, and −m < x−i < m, for i = 1, . . . , k.

unif01_Gen * umrg_CreateMRGFloat (long m, int k, long A[], long S[]);

Similar to umrg_CreateMRG above, but uses a floating-point implementation, as described in [80].
Restrictions: 2 ≤ k, −m < ai < m and−m < x−i < m for i = 1, . . . , k, and m max(Q+,−Q−) <
253 where Q+ is the sum of the positive coefficients ai and Q− is the sum of the negative
coefficients ai.

#ifdef USE_GMP
unif01_Gen * umrg_CreateBigMRG (char *m, int k, char *A[], char *S[]);

Similar to umrg_CreateMRG above, except that the modulus, coefficients, and initial state are
given as decimal character strings in m, A[0..(k-1)] and S[0..(k-1)]. Restrictions: −m <
ai < m and −m < x−i < m for i = 1, . . . , k.

#endif

unif01_Gen * umrg_CreateLagFibFloat (int k, int r, char Op, int Lux,
unsigned long S[]);

Implements a 2-lags Fibonacci generator [103, 66], using a floating-point implementation, with
recurrence

un = (un−k Op un−r) mod 1,
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where the binary operator Op can take the values ’+’ or ’-’, which stand for addition and
subtraction. The seed vector S[0..(k-1)] must contain the first k values u−1, . . . , u−k. The
parameter Lux gives the luxury level defined as follows: if Lux is larger than k, then for each
block of Lux successive output values, the first k are used and the next Lux− k are skipped. If
Lux ≤ k, no value is skipped. Note: for Op = ’-’, one may choose either k < r or k > r. For
example, the case k = 55, r = 24 corresponds to Xn = (Xn−55 −Xn−24) mod 1, while the case
k = 24, r = 55 corresponds to Xn = (Xn−24 −Xn−55) mod 1. Restrictions: S[i] < 232 and Op
∈ {’+’, ’-’}.

unif01_Gen * umrg_CreateLagFib (int t, int k, int r, char Op, int Lux,
unsigned long S[]);

Similar to umrg_CreateLagFibFloat, except that the implementation uses t-bit integers

Xn = (Xn−k Op Xn−r) mod 2t.

The parameter Op may take one of the values {’*’, ’+’, ’-’, ’x’}, which stands for mul-
tiplication, addition, subtraction, and exclusive-or respectively. Note that the resulting multi-
plicative lagged-Fibonacci generator is not an MRG. Assume that k > r. If M is a power of
2, say M = 2t, then the maximal period length is (2k − 1)2t−1 for the additive and subtractive
cases, and (2k − 1)2t−3 for the multiplicative case. This maximal period is reached if and only
if the characteristic polynomial f(x) = xk − xk−r − 1 is a primitive polynomial modulo 2 (i.e.,
over the finite field F2) [64, 7, 11]. Pairs of lags (k, r) that give a maximal period can be found
in [115, 66, 7]. Note: for Op = ’-’, one may choose k < r or k > r. For example, the case
k = 55, r = 24 corresponds to Xn = (Xn−55−Xn−24) mod 2t, while k = 24, r = 55 corresponds
to Xn = (Xn−24 −Xn−55) mod 2t. Restrictions: 0 < t ≤ 64. In the case Op = ’*’, all the S[i]
must be odd; if they are not, 1 will be added to the even values.

Combined MRGs

unif01_Gen * umrg_CreateC2MRG (long m1, long m2, int k, long A1[],
long A2[], long S1[], long S2[]);

Implements a generator that combines two MRGs of order k. The combination method is by
subtracting the states modulo m1 and the implementation is the same as in Figure 1 of [76].
Restrictions: assumes that a11 = 0, a12 > 0, a13 < 0, a21 > 0, a22 = 0 and a23 < 0, k = 3 and
the coefficients must satisfy the conditions a1j(m1 mod a1j) < m1 and a2j(m2 mod a2j) < m2.

#ifdef USE_GMP
unif01_Gen * umrg_CreateBigC2MRG (char *m1, char *m2, int k, char *A1[],

char *A2[], char *S1[], char *S2[]);

Implements a combined generator obtained from 2 MRGs of order k, whose modulus are m1

and m2. The coefficients of the 2 components are given as decimal strings in A1[0..(k-1)],
A2[0..(k-1)], and the initial values are in S1[0..(k-1)], S2[0..(k-1)], also given as deci-
mal strings. Restrictions are as for umrg_CreateMRG.

#endif
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Clean-up functions

void umrg_DeleteMRG (unif01_Gen * gen);
void umrg_DeleteMRGFloat (unif01_Gen * gen);
void umrg_DeleteLagFib (unif01_Gen * gen);
void umrg_DeleteLagFibFloat (unif01_Gen * gen);
void umrg_DeleteC2MRG (unif01_Gen * gen);

#ifdef USE_GMP
void umrg_DeleteBigMRG (unif01_Gen * gen);
void umrg_DeleteBigC2MRG (unif01_Gen * gen);

#endif

Frees the dynamic memory used by the generators of this module, and allocated by the corre-
sponding Create function.

Some related generators

For some other specific lagged-Fibonacci generators, see also

• uknuth_CreateRan_array1

• uknuth_CreateRan_array2

• uknuth_CreateRanf_array1

• uknuth_CreateRanf_array2
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ucarry

Generators based on linear recurrences with carry are implemented in this module.
This includes the add-with-carry (AWC), subtract-with-borrow (SWB), multiply-with-carry
(MWC), and shift-with-carry (SWC) generators. For the theoretical properties of these gen-
erators and other details, we refer the reader to [13, 14, 15, 67, 160].

#include "gdef.h"
#include "unif01.h"

unif01_Gen * ucarry_CreateAWC (unsigned int r, unsigned int s,
unsigned long c, unsigned long m,
unsigned long S[]);

Implements the add-with-carry (AWC) generator proposed by Marsaglia and Zaman [116], based
on the recurrence

xi = (xi−r + xi−s + ci−1) mod m, (2.3)
ci = (xi−r + xi−s + ci−1) div m, (2.4)

with output ui = xi/m. The vector S[0..k-1] contains the k initial values (x0, . . . , xk−1),
where k = max{r, s}, and c contains c0. Restrictions: 0 < s, 0 < r, r 6= s and c = 0 or 1.

unif01_Gen * ucarry_CreateSWB (unsigned int r, unsigned int s,
unsigned long c, unsigned long m,
unsigned long S[]);

Implements the subtract-with-borrow (SWB) generator proposed by Marsaglia and Zaman [116],
based on the recurrence

xi = (xi−r − xi−s − ci−1) mod m, (2.5)

ci = I[(xi−r − xi−s − ci−1) < 0], (2.6)

with output ui = xi/m, where I is the indicator function. The vector S[0..(k-1)] contains
the k initial values (x0, . . . , xk−1), where k = max{r, s}, and c contains c0. Restrictions : 0 < s,
0 < r, r 6= s and c = 0 or 1.

unif01_Gen * ucarry_CreateRanlux (unsigned int L, long s);

Implements the specific modified SWB generator proposed by Lüscher [102]. This is an adapted
version of the FORTRAN implementation of James [55]. The parameter L is the luxury level
and s is the initial state. Restriction: 24 ≤ L. The precision of this generator is only 24 bits.
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#ifdef USE_LONGLONG
unif01_Gen * ucarry_CreateMWC (unsigned int r, unsigned long c,

unsigned int w, unsigned long A[],
unsigned long S[]);

#endif

Implements the multiply-with-carry (MWC) generator, defined by [15]:

xn = (a1xn−1 + · · ·+ arxn−r + cn−1) mod 2w; (2.7)
cn = (a1xn−1 + · · ·+ arxn−r + cn−1) div 2w; (2.8)
un = xn/2w. (2.9)

The array A[0..(r-1)] must contain the coefficients a1, . . . , ar, the array S[0..(r-1)] gives
the initial values (x0, . . . , x−r+1), and c gives the value of c0. This implementation uses 64-bit
integers and therefore works only on platforms where these are available. Restrictions: w ≤ 32,
ai < 2w, xi < 2w, and c + (2w − 1)(|a1|+ · · ·+ |ar|) < 264.

unif01_Gen * ucarry_CreateMWCFloat (unsigned int r, unsigned long c,
unsigned int w, unsigned long A[],
unsigned long S[]);

Same as ucarry_CreateMWC, but uses a floating-point implementation (in double). Restrictions:
w ≤ 32, ai < 2w, xi < 2w, and c + (2w − 1)(|a1|+ · · ·+ |ar|) < min{253, 232+w}.

unif01_Gen * ucarry_CreateMWCfixCouture (unsigned int c,
unsigned int S[]);

Implements the following specific MWC, suggested by Couture and L’Ecuyer [15]:

xn = (14xn−8 + 18xn−7 + 144xn−6 + 1499xn−5 + 2083xn−4

+ 5273xn−3 + 10550xn−2 + 45539xn−1 + cn−1) mod 216,

cn = (14xn−8 + · · ·+ 45539xn−1 + cn−1) div 216,

un =
x2n

2 32
+

x2n+1

2 16
.

The initial state is in S[0..7], and c is the initial carry. The lowest 16 bits and the highest 16
bits of each un come from two successive numbers xj .

unif01_Gen * ucarry_CreateSWC (unsigned int r, unsigned int h,
unsigned int c, unsigned int w,
unsigned int A[], unsigned int S[]);

Implements the shift-with-carry (SWC) generator designed by R. Couture, based on the recur-
rence

xn = (a1xn−1 ⊕ · · · ⊕ arxn−r ⊕ cn−1) mod 2w (2.10)
cn = (a1xn−1 ⊕ · · · ⊕ arxn−r ⊕ cn−1) div 2w (2.11)
un = xn/2w, (2.12)
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The vector (xn, . . . , xn−r+1, cn) is the state of the generator. The array A[0..h-1] contains
the polynomials a1, . . . , ar. Each even element stands for a polynomial number and the next
element stands for the corresponding nonzero coefficient number of that polynomial. The vector
S[0..r-1] gives the initial values of (x0, . . . , x−r+1) and c is the initial carry. Restrictions: 0 < r
and w ≤ 32.

unif01_Gen * ucarry_CreateMWC1616 (unsigned int a, unsigned int b,
unsigned int x, unsigned int y);

Implements the combined generator of two 16-bit multiply-with-carry generators [106]

xn = (axn−1 + carxn−1) mod 216, (2.13)
carxn = (axn−1 + carxn−1) div 216, (2.14)

yn = (byn−1 + caryn−1) mod 216, (2.15)
caryn = (byn−1 + caryn−1) div 216. (2.16)

The rightmost 16 bits of the two above product make the new x (or y) and the leftmost 16 bits
the new carry carx (or cary). The function returns (xn � 16) + (yn & 0xffff); the output is a
32-bit integer, xn making up its leftmost 16 bits and yn its rightmost 16 bits.

Clean-up functions

These functions should be called to clean up generator objects of this module when they
are no longer in use.

void ucarry_DeleteAWC (unif01_Gen *gen);
void ucarry_DeleteSWB (unif01_Gen *gen);
void ucarry_DeleteRanlux (unif01_Gen *gen);
void ucarry_DeleteMWC (unif01_Gen *gen);
void ucarry_DeleteMWCFloat (unif01_Gen *gen);
void ucarry_DeleteMWCfixCouture (unif01_Gen *gen);
void ucarry_DeleteSWC (unif01_Gen *gen);

Frees the dynamic memory used by the generators of this module, and allocated by the corre-
sponding Create function.

void ucarry_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have a specific
Delete function.
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utaus

Implements simple and combined Tausworthe generators using the definitions, the ini-
tialization methods and the algorithms given in [75, 77]. The current implementation is
restricted to components whose characteristic polynomial is a trinomial. That is, for a sim-
ple generator and for each component of a combined generator, the basic recurrence has the
form

xn = xn−r ⊕ xn−k = xn−k+q ⊕ xn−k, (2.17)

with characteristic polynomial p(x) = xp + xq + 1, where q = k− r, each xn is 0 or 1, and ⊕
means exclusive-or (i.e., addition modulo 2). The output at step n is

un =
w∑

j=1

xns+j−12
−j (2.18)

with w = 32. To obtain w < 32, it suffices to truncate the output. The parameters must
satisfy the following conditions: 0 < 2q < k ≤ 32 (except in the case of the LongTaus

generator for which k can take values as high as 64) and 0 < s ≤ r. In the functions defined
below, the k most significant bits of the variable Y contain the initial values x0, . . . , xk−1

(this is the seed). They must not be all zero.

#include "gdef.h"
#include "unif01.h"

unif01_Gen * utaus_CreateTaus (unsigned int k, unsigned int q,
unsigned int s, unsigned int Y);

Implements a simple Tausworthe generator as described above. Restrictions: 0 < 2q < k ≤ 32
and 0 < s ≤ k − q.

unif01_Gen * utaus_CreateTausJ (unsigned int k, unsigned int q,
unsigned int s, unsigned int j,
unsigned int Y);

Implements a Tausworthe generator as in utaus_CreateTaus, except that it produces a j-
decimated sequence. That is, at each call, it skips j − 1 values in the sequence defined by
(2.17–2.18) and outputs the next one. The same restrictions as in utaus_CreateTaus apply.

#ifdef USE_LONGLONG
unif01_Gen * utaus_CreateLongTaus (unsigned int k, unsigned int q,

unsigned int s, ulonglong Y1);

Similar to utaus_CreateTaus but uses 64 bits integers for the state of the generator. However,
it returns only the 32 most significant bits of each generated number, after having shifted them
32 bits to the right. Restrictions: k ≤ 64, 0 < 2q < k and 0 < s ≤ k − q.
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#endif

unif01_Gen * utaus_CreateCombTaus2 (
unsigned int k1, unsigned int k2, unsigned int q1, unsigned int q2,
unsigned int s1, unsigned int s2, unsigned int Y1, unsigned int Y2);

Combines two Tausworthe generators defined as in utaus_CreateTaus. The combination is via
a bitwise exclusive-or, as in [77, 157, 159]. The same restrictions as in utaus_CreateTaus apply
to each of the two components. Also assumes that k1 ≥ k2.

unif01_Gen * utaus_CreateCombTaus3 (
unsigned int k1, unsigned int k2, unsigned int k3,
unsigned int q1, unsigned int q2, unsigned int q3,
unsigned int s1, unsigned int s2, unsigned int s3,
unsigned int Y1, unsigned int Y2, unsigned int Y3);

Similar to utaus_CreateCombTaus2, except that three Tausworthe generators are combined
instead of two. Assumes that k1 ≥ k2 ≥ k3.

unif01_Gen * utaus_CreateCombTaus3T (
unsigned int k1, unsigned int k2, unsigned int k3,
unsigned int q1, unsigned int q2, unsigned int q3,
unsigned int s1, unsigned int s2, unsigned int s3,
unsigned int Y1, unsigned int Y2, unsigned int Y3);

Similar to utaus_CreateCombTaus3, except that the generator has “triple” precision. Three
successive output values ui of the combined Tausworthe generator are used to build each output
value Ui (uniform on [0, 1)) of this generator, as follows:

Ui =
(
u3i +

u3i+1

217
+

u3i+2

234

)
mod 1.

Clean-up functions

void utaus_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.

Related generators

For specific Tausworthe generators, see also

• utezu_CreateTezLec91

• utezu_CreateTez95
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• ulec_Createlfsr88

• ulec_Createlfsr88T

• ulec_Createlfsr113

• ulec_Createlfsr258
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ugfsr

This module implements generalized feedback shift register (GFSR) generators, twisted
GFSR (TGFSR) generators, and tempered TGFSR generators (TTGFSR).

The following table points to some specific generators based on trinomials, taken from
the literature.

Table 2.2: Some specific GFSRs and TGFSRs
k r ` Type Reference

607 273 23 GFSR [163, 125]
521 32 31 GFSR [145]
521 32 31 GFSR [45]
250 103 32 GFSR [62]
25 7 32 TGFSR T800 [125]
25 14 32 TTGFSR TT400 [125]
13 11 31 TTGFSR TT403 [125]
25 17 31 TTGFSR TT775 [125]
25 7 32 TTGFSR TT800 [125]

624 397 32 TTGFSR MT19937 [126]

#include "unif01.h"

GFSR generators

unif01_Gen * ugfsr_CreateGFSR3 (unsigned int k, unsigned int r,
unsigned int l, unsigned long S[]);

Implements a generator GFSR based on the recurrence

xi = xi−r ⊕ xi−k (2.19)

where each xi is a 32-bit vector, ⊕ stands for bitwise addition modulo 2, and r < k. The
output at step i is ui = x̃i/2l, where x̃i is the integer formed by the first l bits of xi. The array
S[0..(k-1)] contains the k initial bit vectors x0, . . . , xk−1. Proper initialization techniques for
this generator are discussed, e.g., in [44] and [158]. Restrictions: 0 < r < k and l ≤ 32.

unif01_Gen * ugfsr_CreateToot73 (unsigned long S[]);

Implements the Tausworthe generator of parameters (k, r, s, l) = (607, 273, 512, 23) proposed in
[163], under the form of a GFSR. The generator is initialized as in [163] from the “arbitrary”
bits given in S[0..k-1]. This generator is the same as G607 in [125].
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unif01_Gen * ugfsr_CreateKirk81 (long s);

Implements the GFSR generator proposed by Kirkpatrick and Stoll [62], with their initialization
procedure. The parameters are (k, r, l) = (250, 103, 32) and s is the seed.

unif01_Gen * ugfsr_CreateRipley90 (long s);

Implements the GFSR generator given in the appendix of Ripley [145]. It is a GFSR with
parameters (k, r, l) = (521, 32, 31). The state of this GFSR is initialized as in [145] from a
MLCG of modulus m = 231− 1 and multiplier a = 16807, whose initial state is s. The returned
value is yi/(231 − 1).

unif01_Gen * ugfsr_CreateFushimi (int k, int r, int s);

Implements a GFSR generator with l = 31, with the initialization procedure proposed by
Fushimi [45], using s as a seed to construct the initial state.

unif01_Gen * ugfsr_CreateFushimi90 (int s);

Implements a specific GFSR generator proposed by Fushimi [45], with parameters (k, r, l) =
(1563, 1467, 31) and using s as a seed to construct the initial state.

unif01_Gen * ugfsr_CreateGFSR5 (unsigned int k, unsigned int r1,
unsigned int r2, unsigned int r3,
unsigned int l, unsigned long S[]);

Implements a GFSR generator whose characteristic polynomial is a pentanomial, i.e., based on
the recurrence

xi = xi−r3 ⊕ xi−r2 ⊕ xi−r1 ⊕ xi−k

where the xi’s are vectors of 32 bits whose first l bits are used to create the output, as described
in ugfsr_CreateGFSR3. The array S[0..(k-1)] contains the k initial bit vectors x0, . . . , xk−1.
Restrictions: 1 ≤ l ≤ 32 and 0 < r3 < r2 < r1 < k.

unif01_Gen * ugfsr_CreateZiff98 (unsigned long S[]);

Implements a specific pentanomial-based GFSR generator proposed by Ziff [178], with parame-
ters (k, r1, r2, r3, l) = (9689, 6988, 1586, 471, 32). The array S[0..9688] must contain the initial
state.

Twisted GFSR generators

unif01_Gen * ugfsr_CreateTGFSR (unsigned int k, unsigned int r,
unsigned int l, unsigned long Av,
unsigned long S[]);

Implements the original form of TGFSR generator proposed by Matsumoto and Kurita [124].
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It is based on the recurrence
xi = xi−k ⊕ (xi−rA), (2.20)

where k, r, l and the xi’s are as in (2.19), and A is a binary matrix of dimension l × l whose
first superdiagonal has all its elements equal to 1, the last row is the vector Av, and all other
elements are 0. The output at step i is ui = x̃i/2l, where x̃i is the integer formed by the first l
bits of xi. Matsumoto and Kurita [125] later reported deficiencies of this generator. The array
S[0..(k-1)] contains the k initial bit vectors x0, . . . , xk−1. Remark: the notation

xi+k = xi−r′ ⊕ xi,

where r′ = k − r, is used in [125]. In other words, their r correspond to our k − r.

unif01_Gen * ugfsr_CreateT800 (unsigned long S[]);

Implements the TGFSR generator T800 proposed by Matsumoto and Kurita [125], whose pa-
rameters are (k, r, l) = (25, 18, 32) and Av = 0x8EBD028. The array S[0..(k-1)] contains the
k initial bit vectors x0, . . . , xk−1.

unif01_Gen * ugfsr_CreateTGFSR2 (unsigned int k, unsigned int r,
unsigned int l, unsigned int s,
unsigned int t, unsigned long Av,
unsigned long Bv, unsigned long Cv,
unsigned long S[]);

Implements the generator TGFSR-II proposed by Matsumoto and Kurita [125], based on the
same recurrence as their original TGFSR, but where a tempering is added to improve the
statistical quality of the output. It is defined by

xi = xi−k ⊕ (xi−rA), (2.21)
yi = xi ⊕ ((xi � s) & b), (2.22)
zi = yi ⊕ ((yi � t) & c), (2.23)

where � s means a left shift by s bits, & means the bitwise-and operation, and the bit vectors b
and c are given by Bv and Cv. The output ui is constructed as described in ugfsr_CreateTGFSR,
but using zi instead of xi. The array S[0..(k-1)] contains the k initial bit vectors x0, . . . , xk−1.

unif01_Gen * ugfsr_CreateTT400 (unsigned long S[]);

Implements the generator TT400 proposed by Matsumoto and Kurita [125], whose parameters
are (k, k − r, l) = (25, 11, 16), s = 2, t = 7, Av = 0xA875 , Bv = 0x6A68, Cv = 0x7500. The
array S[0..(k-1)] contains the k initial bit vectors x0, . . . , xk−1. The returned value is zi/(216−
1).

unif01_Gen * ugfsr_CreateTT403 (unsigned long S[]);

Implements the generator TT403 proposed by Matsumoto and Kurita [125], whose parame-
ters are (k, k − r, l) = (13, 2, 31), s = 8, t = 14, Av = 0x6B5ECCF6, Bv = 0x102D1200, Cv
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= 0x66E50000. The array S[0..(k-1)] contains the k initial bit vectors x0, . . . , xk−1. The
returned value is zi/(231 − 1).

unif01_Gen * ugfsr_CreateTT775 (unsigned long S[]);

Implements the generator TT775 proposed by Matsumoto and Kurita [125], whose parame-
ters are (k, k − r, l) = (25, 8, 31), s = 6, t = 14, Av = 0x6C6CB38C, Bv = 0x1ABD5900, Cv
= 0x776A0000. The array S[0..(k-1)] contains the k initial bit vectors x0, . . . , xk−1. The
returned value is zi/(231 − 1).

unif01_Gen * ugfsr_CreateTT800 (unsigned long S[]);

Implements the generator TT800 proposed by Matsumoto and Kurita [125], whose param-
eters are (k, r, l) = (25, 18, 32), s = 7, t = 15, Av = 0x8EBFD028, Bv = 0x2B5B2500, Cv =
0xDB8D0000. The array S[0..24] contains the k initial bit vectors x0, . . . , xk−1. The returned
value is zi/232.

unif01_Gen * ugfsr_CreateTT800M94 (unsigned long S[]);

The original implementation of TT800 provided by Matsumoto and Kurita [125], in 1994. The
array S[0..24] contains the k initial bit vectors x0, . . . , xk−1. The returned value is zi/(232−1).

unif01_Gen * ugfsr_CreateTT800M96 (unsigned long S[]);

A second implementation of TT800, provided by Matsumoto and Kurita in 1996. The array
S[0..24] contains the k initial bit vectors x0, . . . , xk−1. The returned value is zi/(232 − 1).

unif01_Gen * ugfsr_CreateMT19937_98 (unsigned long seed);

The original implementation of the Mersenne twister generator of Matsumoto and Nishimura
[126]. Its period length is 219937−1. The returned value is zi/(232−1). This is the 1998 version.

unif01_Gen * ugfsr_CreateMT19937_02 (unsigned long seed,
unsigned long Key[], int len);

The 2002 version of the Mersenne twister generator of Matsumoto and Nishimura [126], which
has a better initialization procedure than the original 1998 version. If len ≤ 0 or Key = NULL,
then seed is used to initialize the state vector. If len > 0, the array Key of length len is used
instead. If len is smaller than 624, then each array of 32-bit integers gives distinct initial state
vectors. This is useful if one wants a larger seed space than a single 32-bit word.

Clean-up functions

void ugfsr_DeleteGFSR5 (unif01_Gen * gen);

Frees the dynamic memory allocated by ugfsr_CreateGFSR5.
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void ugfsr_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called when a generator is no longer in use.
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uinv

This module implements different types of inversive generators.

#include "unif01.h"

unif01_Gen * uinv_CreateInvImpl (long m, long a1, long a2, long z0);

Implements a nonlinear inversive generator as defined in [28] and [73, p.93], with

zn =

{
(a1 + a2 · z−1

n−1) mod m si zn−1 6= 0

a1 si zn−1 = 0
un = zn/m.

The generator computes z−1
n−1 via the modified Euclid algorithm (see [64] p. 325). If m is prime

and if p(x) = x2−a1x−a2 is a primitive polynomial modulo m, then this generator has maximal
period m. Restrictions: 0 ≤ z0 < m, 0 < a1 < m and 0 < a2 < m. Furthermore, m must be a
prime number, preferably large.

unif01_Gen * uinv_CreateInvImpl2a (int e, unsigned long a1,
unsigned long a2, unsigned long z0);

Implements a nonlinear inversive generator similar to uinv_CreateInvImpl, but with m = 2e

(see [28] p. 172). The domain is limited to odd positive integers since the inverse modulo 2e

of a given x exists only if x is odd. For e = 31 or 32, the generator computes the inverse
by exponentiation according to the formula: x−1 = xm−1 = x(m div 4)−1. For e ≤ 30, the
inverse is computed via the modified Euclid algorithm (faster than exponentiation, but our
implementation of it is only valid in the domain of long, i.e. if m ≤ 231 − 1). If e ≥ 3 and if
a2−1 and a1−2 are multiples of 4, then the period is maximal and equal to m/2. Restrictions:
3 ≤ e ≤ 32; z0, a1 and a2 less than m; z0 and a2 must be odd and a1 must be even.

unif01_Gen * uinv_CreateInvImpl2b (int e, unsigned long a1,
unsigned long a2, unsigned long z0);

Implements a nonlinear inversive generator with m = 2e as described in [31]. The recurrence is:

zn = T (zn−1)

where
T (2`z) = (a1 + 2`a2z

−1) mod 2e

whenever z is odd. For e = 31 or 32, the inverse is computed by exponentiation according to
the formula: x−1 = xm−1 = x(m div 4)−1. For e ≥ 3, if a2 − 1 is a multiple of 4 and if a1 is odd,
then the period is maximal and equal to m. Restrictions: 3 ≤ e ≤ 32; z0, a1 and a2 less than
m and odd.
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unif01_Gen * uinv_CreateInvExpl (long m, long a, long c);

Implements an explicit nonlinear inversive generator, as described in [29] and [75] (Section 10.2),
with

zn =

{
x−1

n si xn 6= 0

0 si xn = 0

where xn = (an + c) mod m for n ≥ 0. The generator computes x−1
n by the modified Euclid

algorithm (see [64] p. 325). The initial state of the generator, x0, is given by c. Restrictions:
0 < a < m, 0 ≤ c < m and m must be a prime number. In this case, the period has length m.

unif01_Gen * uinv_CreateInvExpl2a (int e, long a, long c);

Implements an explicit nonlinear inversive generator, similar to uinv_CreateInvExpl, but with
m = 2e, as described in [34]. Restrictions: 3 ≤ e ≤ 32; a and c less than m, a− 2 multiple of 4
and c odd.

unif01_Gen * uinv_CreateInvExpl2b (int e, long a, long c);

Implements an explicit modified nonlinear inversive generator, with m = 2e, as proposed in [30].
The recurrence has the form

xn = n(an + c)−1 mod 2e; un = xn2−e.

Restrictions: 3 ≤ e ≤ 32, a < m, c < m, a− 2 multiple of 4, and c odd. With these restrictions,
the period is equal to m.

unif01_Gen * uinv_CreateInvMRG (long m, int k, long A[], long S[]);

Implements an inversive multiple recursive generator (MRG), based on the recurrence

xn = (a1xn−1 + · · ·+ akxn−k) mod m

as in umrg_CreateMRG, except that the output un is constructed using x−1
n mod m instead of

xn. Restrictions: The same restrictions as for umrg_CreateMRG apply here and m must be a
prime number.

unif01_Gen * uinv_CreateInvMRGFloat (long m, int k, long A[], long S[]);

Provides a floating-point implementation of the same generator as in uinv_CreateInvMRG. The
implementation is similar to that in umrg_CreateMRGFloat. Restrictions: The same restrictions
apply here as for umrg_CreateMRGFloat and m must be a prime number.

Clean-up functions

void uinv_DeleteInvMRG (unif01_Gen * gen);

Frees the dynamic memory allocated by uinv_CreateInvMRG.
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void uinv_DeleteInvMRGFloat (unif01_Gen * gen);

Frees the dynamic memory allocated by uinv_CreateInvMRGFloat.

void uinv_DeleteGen (unif01_Gen * gen);

Frees the dynamic memory allocated by the other Create functions of this module.
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uquad

This module implements generators based on quadratic recurrences modulo m, of the
form

xn+1 = (ax2
n + bxn + c) mod m, (2.24)

with output un = xn/m at step n. See, e.g., [27, 33, 35, 66] for analyses of such generators.

#include "unif01.h"

unif01_Gen * uquad_CreateQuadratic (long m, long a, long b, long c, long s);

Initializes a generator based on recurrence (2.24), with initial state x0 = s. Depending on the
values of the parameters, various implementations of different speeds are used. In general, this
generator is slow. Restrictions: a, b, c and s non negative and less than m.

unif01_Gen * uquad_CreateQuadratic2 (int e, unsigned long a,
unsigned long b, unsigned long c, unsigned long s);

Similar to uquad_CreateQuadratic, but with m = 2e. Restrictions: a, b, c and s non negative
and less than 2e; e ≤ 32 for 32-bit machines, and e ≤ 64 for 64-bit machines.

Clean-up functions

void uquad_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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ucubic

This module implements simple and combined cubic congruential generators, based on
recurrences of the form

xn+1 = (ax3
n + bx2

n + cxn + d) mod m, (2.25)

with output un = xn/m at step n. See, e.g., [32, 90].

Generators based on a linear congruential recurrence, but with a cubic output transfor-
mation, are also available (see ucubic_CreateCubicOut).

#include "unif01.h"

unif01_Gen * ucubic_CreateCubic (long m, long a, long b, long c, long d,
long s);

Initializes a generator of the form (2.25), with initial state x0 = s. Depending on the values of
the parameters, various implementations of different speed are used. In general, this generator
is rather slow. Restrictions: a, b, c, d, and s non negative and less than m.

unif01_Gen * ucubic_CreateCubicFloat (long m, long a, long b, long c,
long d, long s);

A floating-point implementation of the same generator as in ucubic_CreateCubic. The imple-
mentation depends on the parameter values and is slower when m(m − 1) > 253. The same
restrictions as for ucubic_CreateCubic apply. Also assumes that a double has at least 53 bits
of precision.

unif01_Gen * ucubic_CreateCubic1 (long m, long a, long s);

Implements a cubic generator which is a special case of (2.25), with recurrence xn+1 = (ax3
n +

1) mod m. The initial state is x0 = s and the n-th generated value is un = xn/m. Restrictions:
a and s non negative and less than m.

unif01_Gen * ucubic_CreateCubic1Float (long m, long a, long s);

Floating-point implementation of the same generator as in ucubic_CreateCubic1. The imple-
mentation and restrictions are similar to those in ucubic_CreateCubicFloat.

unif01_Gen * ucubic_CreateCombCubic2 (long m1, long m2, long a1, long a2,
long s1, long s2);

Implements a generator that combines two cubic components of the same type as in the proce-
dure ucubic_CreateCubic1. The output is un = (x1,n/m1 + x2,m/m2) mod 1, where x1,n and
x2,n are the states of the two components at step n.
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unif01_Gen * ucubic_CreateCubicOut (long m, long a, long c, long s);

Initializes a generator defined by the linear recurrence xn+1 = (axn + c) mod m, with initial
state x0 = s, and with output un = (x3

n mod m)/m. Restrictions: a, c and s non negative and
less than m.

unif01_Gen * ucubic_CreateCubicOutFloat (long m, long a, long c, long s);

A floating-point implementation of ucubic_CreateCubicOut. The implementation and restric-
tions are similar to those in ucubic_CreateCubicFloat.

Clean-up functions

void ucubic_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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uxorshift

This module implements xorshift generators, a class of very fast generators proposed by
Marsaglia in [111], and studied in depth by Panneton and L’Écuyer in [132]. The state of a
xorshift generator is a vector of bits. At each step, the next state is obtained by applying a
given number of xorshift operations to w-bit blocks in the current state, where w = 32 or 64.
A xorshift operation is defined as follows: replace the w-bit block by a bitwise xor (exclusive
or) of the original block with a shifted copy of itself by a positions either to the right or to
the left, where 0 < a < w.

Xorshifts are linear operations. The left shift of a w-bit vector x by one bit, x � 1, can
also be written as Lx where L is the w × w matrix with 1’s on its main subdiagonal and
0’s elsewhere. Similarly, the right shift x � 1 can be written as Rx where R has 1’s on its
main superdiagonal and 0’s elsewhere. Matrices of the forms (I + La) and (I + Ra), where
a ∈ {1, . . . , w − 1}, are called left and right xorshift matrices, respectively. They represent
left and right a-bit xorshift operations.

A xorshift generator is defined by a recurrence of the form

vi =

p∑
j=1

Ãjvi−mj
mod 2 (2.26)

where p is a positive integer, the vi’s are w-bit vectors, the mj’s are integers, and Ãj is either
the identity or the product of νj xorshift matrices for some νj ≥ 0, for each j (Ãj is the zero
matrix if νj = 0). The generator’s state at step i is xi = (vT

i , . . . ,vT
i−r+1)

T and the output is
ui =

∑w
`=1 vi,`−12

−` where vi = (vi,0, . . . , vi,w−1)
T.

#include "gdef.h"
#include "unif01.h"

unif01_Gen* uxorshift_CreateXorshift32 (int a, int b, int c, unsigned int x);

Implements the 32-bit Xorshift generators proposed by Marsaglia in [111, page 3]:

y = yn−1 ⊕ (yn−1 H1 a),
y = y ⊕ (y H2 b),

yn = y ⊕ (y H3 c) mod 232

where the operators H1, H2 and H3 may be either the left bit-shift operator � or the right
bit-shift operator �, depending on whether the corresponding parameter (a, b or c) is positive
(left shift) or negative (right shift). The initial seed is x and the generator returns yn/232.
Restrictions: −32 < a, b, c < 32.
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#ifdef USE_LONGLONG
unif01_Gen* uxorshift_CreateXorshift64 (int a, int b, int c, ulonglong x);

#endif

Similar to uxorshift_CreateXorshift32 but using 64-bit integers (see [111, page 3]). Only
the 32 most significant bits of each generated number are returned, though the generator does
all its calculations with 64 bits. Restrictions: −64 < a, b, c < 64.

unif01_Gen * uxorshift_CreateXorshiftC (int a, int b, int c, int r,
unsigned int X[]);

Generalizes the Xorshift generators proposed by Marsaglia in [111, page 4] to generators with
maximal period 232r−1. Given integers xi, i = 1, 2, . . . , r, representing the state of the generator,
the next state is obtained through:

t = x1 ⊕ (x1 H1 a)
xi = xi+1, i = 1, 2, . . . , r − 1
xr = xr ⊕ (xr H3 c)⊕ t⊕ (t H2 b)

where the operators H1, H2 and H3 may be either the left bit-shift operator � or the right
bit-shift operator �, depending on whether the corresponding parameter (a, b or c) is positive
(left shift) or negative (right shift). The initial state xi is obtained from the seed X as xi =
X[i− 1], i = 1, 2, . . . , r and the generator returns xr/232. Restrictions: −32 < a, b, c < 32.

unif01_Gen * uxorshift_CreateXorshiftD (int r, int a[], unsigned int X[]);

Generalizes the Xorshift generators proposed by Marsaglia in [111, page 5] to generators with
maximal period 232r−1. Given integers xi, i = 1, 2, . . . , r, representing the state of the generator,
and shift parameters ai, i = 1, 2, . . . , r, the next state is obtained through:

t = x1 ⊕ (x1 H1 a1)⊕ x2 ⊕ (x2 H2 a2)⊕ · · · ⊕ xr ⊕ (xr Hr ar)
xi = xi+1, i = 1, 2, . . . , r − 1
xr = t

where the operators Hi may be either the left bit-shift operator � or the right bit-shift operator
�, depending on whether the corresponding parameter ai is positive (left shift) or negative
(right shift). The initial state xi is obtained from the seed X as xi = X[i− 1], i = 1, 2, . . . , r and
the shift parameters are given by ai = a[i − 1], i = 1, 2, . . . , r. The generator returns xr/232.
Restrictions: −32 < a[i] < 32, i = 0, 1, 2, . . . , r − 1.

unif01_Gen* uxorshift_CreateXorshift7 (unsigned int S[8]);

Creates a full-period Xorshift generator of order 8 with 7 xorshifts, proposed in [132]. It has
a period length of 2256 − 1, its state v is made up of eight 32-bit integers, and it satisfies the
recurrence

vn = (I + L9)(I + L13)vn−1 + (I + L7)vn−4 + (I + R3)vn−5 +

(I + R10)vn−7 + (I + L24)(I + R7)vn−8
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where Lj stands for a j-bits left shift, Rj stands for a j-bits right shift, and I is the identity
operator. All additions are done modulo 2. The S are the 8 seeds.

unif01_Gen* uxorshift_CreateXorshift13 (unsigned int S[8]);

Similar to the uxorshift_CreateXorshift7 generator [132] but with 13 xorshifts and satisfying
the recurrence

vn = (I + L17)vn−1 + (I + L10)vn−2 + (I + R9)(I + L17)vn−4 + (I + R3)vn−4 +

(I + R12)vn−5 + (I + R25)vn−5 + (I + R3)(I + R2)vn−6 + (I + R22)vn−7 +

(I + L24)(I + R3)vn−8.

Clean-up functions

void uxorshift_DeleteXorshiftC (unif01_Gen * gen);

Frees the dynamic memory allocated by uxorshift_CreateXorshiftC.

void uxorshift_DeleteXorshiftD (unif01_Gen * gen);

Frees the dynamic memory allocated by uxorshift_CreateXorshiftD.

void uxorshift_DeleteGen (unif01_Gen * gen);

Frees the dynamic memory used by any generator of this module. This function should be called
when a generator is no longer in use.
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ubrent

This module implements some random number generators proposed by Richard P. Brent
(Web pages at http://web.comlab.ox.ac.uk/oucl/work/richard.brent/ and http://

wwwmaths.anu.edu.au/~brent/random.html).

#include "gdef.h"
#include "unif01.h"

The xorgens generators, version 2004

unif01_Gen* ubrent_CreateXorgen32 (int r, int s, int a, int b, int c, int d,
boolean hasWeyl, unsigned int seed);

Some fast long-period random number generators [8] generalizing Marsaglia’s Xorshift RNGs
[111] (see page 48 of this guide). The output may be combined with a Weyl generator. The
parameters r, s, a, b, c, d are chosen such that the n × n matrix T defining the recurrence has
a minimal polynomial which is of degree n and primitive over F2. The state of the generator
is made up of n = 32r bits. The primary recurrence is xk = xk−rA + xk−sB, where matrices
A and B implement a combination of left and right shifts; in the notation of Marsaglia, A =
(I + La)(I + Rb) and B = (I + Lc)(I + Rd) with I the identity matrix, La a left shift by a bits,
and Rb a right shift by b bits. If hasWeyl is TRUE, then the Weyl combination is added to the
output as in Brent original code. If it is FALSE, then no Weyl combination is added; this is useful
for testing these xorgens by themselves. Restrictions: r > 1, 0 < s < r and 0 < a, b, c, d < 32,
and r must be a power of 2. The following table gives parameters recommended by Brent for
the best 32-bit generators of this kind according to the criteria given in ftp://ftp.comlab.ox.
ac.uk/pub/Documents/techpapers/Richard.Brent/random/xortable.txt.

Table 2.3: Good parameters for Brent’s xorgens generators
n r s a b c d Weight delta

64 2 1 17 14 12 19 31 12
128 4 3 15 14 12 17 55 12
256 8 3 18 13 14 15 109 13
512 16 1 17 15 13 14 185 13

1024 32 15 19 11 13 16 225 11
2048 64 59 19 12 14 15 213 12
4096 128 95 17 12 13 15 251 12

unif01_Gen* ubrent_CreateXor4096s (unsigned int seed);

This is the 32-bit generator xor4096s with period 232(24096 − 1) proposed by Brent [8]. It
is a generalization of Marsaglia’s Xorshift generators [111] (see page 48 of this guide). The
initial seed is seed. This generator corresponds to the more general case above with parameters
n = 4096, r = 128, s = 95, a = 17, b = 12, c = 13, d = 15, Weight = 251, delta = 12.
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#ifdef USE_LONGLONG

unif01_Gen* ubrent_CreateXorgen64 (int r, int s, int a, int b, int c, int d,
boolean hasWeyl, ulonglong seed);

Similar to ubrent_CreateXorgen32 above but with 64-bit generators. The state of the generator
is made up of n = 64r bits, but only the 32 most significant bits of each generated number are
used here. Restrictions: r > 1, 0 < s < r and 0 < a, b, c, d < 64, and r must be a power of 2.
The following table gives parameters recommended by Brent for the best generators of their kind
according to the criteria given in ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/
Richard.Brent/random/xortable.txt.

Table 2.4: Good parameters for Brent’s xorgens generators
n r s a b c d Weight delta

128 2 1 33 31 28 29 65 28
256 4 3 37 27 29 33 127 27
512 8 1 37 26 29 34 231 26

1024 16 7 34 29 25 31 439 25
2048 32 1 35 27 26 37 745 26
4096 64 53 33 26 27 29 961 26

unif01_Gen* ubrent_CreateXor4096l (ulonglong seed);

This is the 64-bit generator xor4096l with period at least (24096−1) proposed by Brent [8]. It is
a generalization of Marsaglia’s Xorshift generators [111] (see page 48 of this guide). The initial
seed is seed. While Brent’s original code returns 64-bit numbers, only the 32 most significant
bits of each generated number are used here.

unif01_Gen* ubrent_CreateXor4096d (ulonglong seed);

This is the 53-bit floating-point generator xor4096d with period at least (24096−1) proposed by
Brent [8]. It is based on xor4096l (implemented in ubrent_CreateXor4096l above) and uses
its 53 most significant bits. The initial seed is seed.

#endif

The xorgens generators, version 2006

unif01_Gen* ubrent_CreateXor4096i (unsigned long seed);

This is the integer random number generator xor4096i with period at least (24096−1) proposed
by Brent (see http://wwwmaths.anu.edu.au/~brent/random.html). This is the 2006 version
of the generators xor4096s and xor4096l. It has a different initialization and a slightly different
algorithm from the 2004 version.
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unif01_Gen* ubrent_CreateXor4096r (unsigned long seed);

This is the floating-point generator xor4096r proposed by Brent (see http://wwwmaths.anu.
edu.au/~brent/random.html). This is the 2006 version of the generators xor4096f and
xor4096d. It is based on xor4096i implemented in ubrent_CreateXor4096i above. The initial
seed is seed.

Clean-up functions

void ubrent_DeleteXorgen32 (unif01_Gen *);
void ubrent_DeleteXor4096s (unif01_Gen *);
void ubrent_DeleteXor4096i (unif01_Gen *);
void ubrent_DeleteXor4096r (unif01_Gen *);

#ifdef USE_LONGLONG
void ubrent_DeleteXorgen64 (unif01_Gen *);
void ubrent_DeleteXor4096l (unif01_Gen *);
void ubrent_DeleteXor4096d (unif01_Gen *);

#endif

Frees the dynamic memory allocated by the corresponding Create functions of this module.
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ulec

This module collects several generators from the papers of L’Ecuyer and his co-authors.

#include "gdef.h"
#include "unif01.h"

unif01_Gen * ulec_CreateCombLec88 (long S1, long S2);

Combined generator for 32-bit machines proposed by L’Ecuyer [72], in its original version. The
integers S1 and S2 are the seed. They must satisfy: 0 < S1 < 2147483563 and 0 < S2 <
2147483399.

unif01_Gen * ulec_CreateCombLec88Float (long S1, long S2);

Same generator as ulec_CreateCombLec88, but implemented using floating-point arithmetic,
as in ulcg_CreateLCGFloat.

unif01_Gen * ulec_CreateCLCG4 (long S1, long S2, long S3, long S4);

This generator is a combined LCG with four components, with period length near 2121, proposed
by L’Ecuyer and Andres [84].

unif01_Gen * ulec_CreateCLCG4Float (long S1, long S2, long S3, long S4);

Same generator as ulec_CreateCLCG4, but implemented using floating-point arithmetic.

unif01_Gen * ulec_CreateMRG93 (long S1, long S2, long S3, long S4, long S5);

MRG of order 5, with modulus m = 231 − 1, multipliers a1 = 107374182, a2 = a3 = a4 = 0,
a5 = 104480, and period length m5 − 1, proposed by L’Ecuyer, Blouin, and Couture [85], page
97. The integers S1 to S5 are the seed. They must be non-negative and not all zero.

unif01_Gen * ulec_CreateCombMRG96 (long S11, long S12, long S13,
long S21, long S22, long S23);

Combined MRG proposed by L’Ecuyer [76], implemented in integer arithmetic using the long
type. This generator combines two MRGs of order 3 with distinct prime moduli less than 2 31.
The six parameters of the function make the seed. They must all be non-negative, the first
three not all zero, and the last three not all zero.

unif01_Gen * ulec_CreateCombMRG96Float (long S11, long S12, long S13,
long S21, long S22, long S23);

Same as ulec_CreateCombMRG96, except that the implementation is in floating-point arithmetic.
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unif01_Gen * ulec_CreateCombMRG96D (long S11, long S12, long S13,
long S21, long S22, long S23);

Similar to ulec_CreateCombMRG96, except that the generator has “double” precision. Two
successive output values ui of the ulec_CreateCombMRG96 generator are used to build each
output value Ui (uniform on [0, 1)) of this generator, as follows:

Ui =
(
u2i +

u2i+1

2 24

)
mod 1.

unif01_Gen * ulec_CreateCombMRG96FloatD (long S11, long S12, long S13,
long S21, long S22, long S23);

Similar to ulec_CreateCombMRG96Float, except that the generator has “double” precision.
Two successive output values ui of the ulec_CreateCombMRG96Float generator are used to
build each output value Ui (uniform on [0, 1)) of this generator, as follows:

Ui =
(
u2i +

u2i+1

2 24

)
mod 1.

unif01_Gen * ulec_CreateMRG32k3a (double x10, double x11, double x12,
double x20, double x21, double x22);

Implements the combined MRG MRG32k3a proposed by L’Ecuyer [80]. Its period length is near
2 191. This is a floating-point implementation. The six parameters represent the initial state and
must be all integers represented as double’s. The first three must be integers in [0, 4294967086]
and not all 0. The last three must be integers in [0, 4294944442] and not all 0.

unif01_Gen * ulec_CreateMRG32k3aL (long x10, long x11, long x12,
long x20, long x21, long x22);

Same as MRG32k3a above, but implemented assuming 64-bit long integers.

unif01_Gen * ulec_CreateMRG32k3b (double x10, double x11, double x12,
double x20, double x21, double x22);

Similar to ulec_CreateMRG32k3a but implements the Wichmann-Hill variant.

unif01_Gen * ulec_CreateMRG32k5a (double x10, double x11, double x12,
double x13, double x14, double x20,
double x21, double x22, double x23,
double x24);

Implements the combined MRG MRG32k5a proposed by L’Ecuyer [80]. Its period length is near
2 319. This is a floating-point implementation.
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unif01_Gen * ulec_CreateMRG32k5b (double x10, double x11, double x12,
double x13, double x14, double x20,
double x21, double x22, double x23,
double x24);

Similar to ulec_CreateMRG32k5b but implements the Wichmann-Hill variant.

#ifdef USE_LONGLONG
unif01_Gen * ulec_CreateMRG63k3a (longlong s10, longlong s11, longlong s12,

longlong s20, longlong s21, longlong s22);

Implements the combined MRG MRG63k3a proposed by L’Ecuyer [80]. Uses 64-bit integers (see
gdef.h) and works only if that type is fully supported by the compiler.

unif01_Gen * ulec_CreateMRG63k3b (longlong s10, longlong s11, longlong s12,
longlong s20, longlong s21, longlong s22);

Similar to ulec_CreateMRG63k3a but implements the Wichmann-Hill variant.
#endif

unif01_Gen * ulec_Createlfsr88 (unsigned int s1, unsigned int s2,
unsigned int s3);

Combined Tausworthe generator proposed by L’Ecuyer [77], with period length near 2 88. The
initial seeds s1, s2, s3 must be greater or equal than 2, 8, and 16 respectively.

unif01_Gen * ulec_Createlfsr113 (unsigned int s1, unsigned int s2,
unsigned int s3, unsigned int s4);

Combined Tausworthe generator proposed by L’Ecuyer [82], with period length near 2113. Re-
strictions: the initial seeds s1, s2, s3, s4 must be greater or equal than 2, 9, 16, and 128
respectively.

#ifdef USE_LONGLONG
unif01_Gen * ulec_Createlfsr258 (ulonglong s1, ulonglong s2, ulonglong s3,

ulonglong s4, ulonglong s5);
#endif

Combined Tausworthe generator proposed by L’Ecuyer [82], with period length near 2258. This
implementation uses 64-bits integers (see gdef.h), and works only with machines and compilers
that support them. Restrictions: the initial seeds s1, s2, s3, s4, s5 must be greater or
equal than 2, 512, 4096, 131072 and 8388608 respectively.

unif01_Gen * ulec_CreateCombTausLCG11 (unsigned int k, unsigned int q,
unsigned int s, unsigned S1,
long m, long a, long c, long S2);

Combines a Tausworthe generator of parameters (k, q, s) and initial state S1 with an LCG of
parameters (m,a, c) and initial state S2. The combination is made via addition modulo 1 of the
outputs of the two generators.
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unif01_Gen * ulec_CreateCombTausLCG21 (unsigned int k1, unsigned int q1,
unsigned int s1, unsigned int Y1,
unsigned int k2, unsigned int q2,
unsigned int s2, unsigned int Y2,
long m, long a, long c, long Y3);

Combines a combined Tausworthe generator with two components of parameters (k1, q1, s1),
(k2, q2, s2) and initial states Y1, Y2, with a LCG of parameters (m,a, c) and initial state Y3.
The combination is made by addition modulo 1 of the outputs of the two generators.

unif01_Gen * ulec_CreateMRG31k3p (long x10, long x11, long x12,
long x20, long x21, long x22);

Implements the combined MRG with two components of order 3 named MRG31k3p by L’Ecuyer
and Touzin [98]. The two components have parameters (m, a1, a2, a3) equal to (231 − 1, 0,
222, 27 + 1) and (231 − 21069, 215, 0, 215 + 1). Its period length is close to 2 185 and the six
parameters represent the initial state. Restrictions: 0 ≤ x10, x11, x12 < 2147483647 and not
all 0, and 0 ≤ x20, x21, x22 < 2147462579 and not all 0.

Clean-up functions

void ulec_DeleteCombTausLCG11 (unif01_Gen *gen);

Frees the dynamic memory allocated by ulec_CreateCombTausLCG11.

void ulec_DeleteCombTausLCG21 (unif01_Gen *gen);

Frees the dynamic memory allocated by ulec_CreateCombTausLCG21.

void ulec_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called when a generator is no longer in use.
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utezuka

This module collects some generators designed by S. Tezuka.

#include "unif01.h"

unif01_Gen * utezuka_CreateTezLec91 (unsigned int Y1, unsigned int Y2);

Implements a combined Tausworthe generator constructed by Tezuka and L’Ecuyer [159], and
whose implementation is given in their paper. The initial values Y1 and Y2 must be positive
and less than 231 and 229 respectively.

unif01_Gen * utezuka_CreateTez95 (unsigned int Y1, unsigned int Y2,
unsigned int Y3);

Implements the combined generator proposed in Figure A.1 of [158], page 194. The initial values
Y1, Y2, Y3 must be positive and less than 228, 229 and 231 respectively.

unif01_Gen * utezuka_CreateTezMRG95 (unsigned int Y1[5],
unsigned int Y2[7]);

Implements the combined generator proposed in Figure A.2 of [158], page 195. The initial values
of the array elements of Y1 and Y2 must be positive and less than 231 and 229 respectively.

Clean-up functions

void utezuka_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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umarsa

This module implements several generators proposed in different places by George
Marsaglia and his co-workers. See also the URL site http://stat.fsu.edu/~geo/. In
the description of the generators, the symbols � stands for the left shift operator, � for the
right shift operator, and ⊕ for the bitwise exclusive-or operator. In the implementations of
the generators, multiplications and divisions by powers of 2 are implemented with left and
right bit shifts.

#include "gdef.h"
#include "unif01.h"

unif01_Gen * umarsa_CreateMarsa90a (int y1, int y2, int y3, int z0,
unsigned int Y0);

Implements the combination proposed by Marsaglia, Narasimhan and Zaman [113]. Its com-
ponents are the subtract-with-borrow generator (SWB) (see CreateSWB in module ucarry)
Xn = (Xn−22 − Xn−43 − C) mod (232 − 5) where C is the borrow, and the Weyl generator
Yn = (Yn−1 − 362436069) mod 232. The combination is done by subtraction modulo 232, i.e.,
Zn = (Xn−Yn) mod 232 and the value returned is un = Zn/232. The first 43 values of the gen-
erator SWB are initialized by the combination of a 3-lag Fibonacci generator whose recurrence
is yn = (yn−1yn−2yn−3) mod 179, with a LCG with recurrence zn = (53zn−1 + 1) mod 169, as
follows: the sixth bit of yizi mod 64 is used to fill the seed numbers of the main generator, bit
by bit. The parameters y1, y2, and y3 are the seeds of the 3-lag Fibonacci sequence, while
z0 is the seed of the sequence zn = (53zn−1 + 1) mod 169. Finally Y0 is the seed of the Weyl
generator. Restrictions: 0 < y1, y2, y3 < 179 and 0 ≤ z0 < 169.

unif01_Gen * umarsa_CreateRANMAR (int y1, int y2, int y3, int z0);

Implements RANMAR, a combination proposed by Marsaglia, Zaman and Tsang in [119]. Its
components are the lagged-Fibonacci generator Xn = (Xn−97 − Xn−33) mod 1, implemented
using 24-bit floating-point numbers, and the arithmetic sequence Sn = (Sn−1−k) mod (224−3).
The first 97 values of the lagged-Fibonacci generator are initialized in exactly the same way as
the main generator in umarsa_CreateMarsa90a. The parameters y1, y2, and y3 are the seeds
of the 3-lag Fibonacci sequence, while z0 is the seed of the LCG. This generator has 24 bits of
resolution. Restrictions: 0 < y1, y2, y3 < 179 and 0 ≤ z0 < 169.

#ifdef USE_LONGLONG
unif01_Gen * umarsa_CreateMother0 (unsigned long x1, unsigned long x2,

unsigned long x3, unsigned long x4, unsigned long c);
#endif

Marsaglia [107] named this generator “The Mother of all RNG’s”. It is a “multiply-with-carry”
generator (MWC) whose recurrence is

Y = 5115 xn−1 + 1776 xn−2 + 1492 xn−3 + 2111111111 xn−4 + C,

xn = Y mod 232,

C = Y / 232,
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where C is the carry. The returned value is xn/232. The four seeds x1, x2, x3 and x4 are the
initial values of the xi and c is the initial carry. Marsaglia uses c = 0 as initial value of the
carry. Restrictions: 0 ≤ c ≤ 2111119494 (= the sum of the coefficients of the xn).

unif01_Gen * umarsa_CreateCombo (unsigned int x1, unsigned int x2,
unsigned int y1, unsigned int c);

Generator Combo proposed by Marsaglia [107]:

xn = (xn−1 xn−2) mod 232,

yn = 30903
(
yn−1 mod 216

)
+ yn−1 div 216.

The output is un = zn/232 with the combination zn = (xn + yn) mod 232. Marsaglia uses c = 0
as initial value of the carry. Restrictions: y1 < 216 and 0 ≤ c ≤ 30903.

unif01_Gen * umarsa_CreateECG1 (unsigned int x1, unsigned int x2,
unsigned int x3);

Marsaglia [107] named these “extended congruential” generators. This one is based on

xn = (65065xn−1 + 67067xn−2 + 69069xn−3) mod (232 − 5)

and un = xn/(232 − 5). Restrictions: 0 ≤ x1, x2, x3 < 4294967291.

unif01_Gen * umarsa_CreateECG2 (unsigned int x1, unsigned int x2,
unsigned int x3);

Generator based on the recurrence

xn = 210(xn−1 + xn−2 + xn−3) mod (232 − 5)

and un = xn/(232 − 5). Restrictions: 0 ≤ x1, x2, x3 < 4294967291.

unif01_Gen * umarsa_CreateECG3 (unsigned int x1, unsigned int x2,
unsigned int x3);

Generator based on the recurrence

xn = (2000xn−1 + 1950xn−2 + 1900xn−3) mod (232 − 209)

and un = xn/(232 − 209). Restrictions: 0 ≤ x1, x2, x3 < 4294967087.

unif01_Gen * umarsa_CreateECG4 (unsigned int x1, unsigned int x2,
unsigned int x3);

Generator based on the recurrence

xn = 220(xn−1 + xn−2 + xn−3) mod (232 − 209)

and un = xn/(232 − 209). Restrictions: 0 ≤ x1, x2, x3 < 4294967087.
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unif01_Gen * umarsa_CreateMWC97R (unsigned int x0, unsigned int y0);

This generator proposed by Marsaglia in [108] concatenates two 16-bit multiply-with-carry
generators based on the recurrences

xn = 36969
(
xn−1 mod 216

)
+ xn−1 div 216,

yn = 18000
(
yn−1 mod 216

)
+ yn−1 div 216,

Zn =
(
216xn + yn mod 216

)
mod 232.

The 16 upper bits of xn and yn are the carries of the respective equation. The generator returns
Zn/(232 − 1). It has been included as the default generator in the GNU package R under the
name Marsaglia-MultiCarry [139].

unif01_Gen * umarsa_CreateULTRA (unsigned int s1, unsigned int s2,
unsigned int s3, unsigned int s4);

Implements the ULTRA generator [107], a combination of a lagged Fibonacci generator (see
CreateLagFib in module umrg) with a multiply-with-carry generator (see CreateMWC in module
ucarry), proposed by Marsaglia with his test suite DIEHARD:

xn = (xn−97 xn−33) mod 232,

yn = 30903
(
yn−1 mod 216

)
+ yn−1 div 216,

zn = (xn + yn) mod 232.

The generator returns zn/232. This agrees with the effective implementation in DIEHARD
which does not agree with its documentation. The four seeds s1, s2, s3 and s4 are used in a
complicated way to initialize the component generators.

unif01_Gen * umarsa_CreateSupDup73 (unsigned int x0, unsigned int y0);

Implements the original SuperDuper generator [112], a combination of a congruential generator
with a shift-register generator:

xn = 69069 xn−1 mod 232,

t = yn−1 ⊕
(
yn−1 div 215

)
,

yn = t⊕
(
217t mod 232

)
,

zn = xn ⊕ yn

The generator returns zn/(232 − 1). The seeds x0 and y0 initializes the xn and yn. Restriction:
x0 must be odd.

unif01_Gen * umarsa_CreateSupDup96Add (unsigned int x0, unsigned int y0,
unsigned int c);

Implements the SuperDuper generator, an additive combination of a congruential generator with
a shift-register generator, proposed by Marsaglia with his test suite DIEHARD [107]:

xn = (69069 xn−1 + c) mod 232,
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t = yn−1 ⊕ (213yn−1),
t = t⊕ (t div 217),

yn = (t⊕ (25t)) mod 232,

zn = (xn + yn) mod 232

The generator returns zn/232. This is the uniform generator (called randuni) included in
Matlab that is used to generate normal random variables. Restriction: c odd.

unif01_Gen * umarsa_CreateSupDup96Xor (unsigned int x0, unsigned int y0,
unsigned int c);

Similar to umarsa_CreateSupDup96Add above, except that the combination of the two genera-
tors is with a bitwise exclusive-or:

zn = xn ⊕ yn

#ifdef USE_LONGLONG
unif01_Gen * umarsa_CreateSupDup64Add (ulonglong x0, ulonglong y0,

ulonglong a, ulonglong c,
int s1, int s2, int s3);

#endif

Implements the 64-bit generator supdup64, an additive combination of a congruential generator
with a shift-register generator, proposed by Marsaglia in [110]:

xn = (a xn−1 + c) mod 264,

t = yn−1 ⊕ (2s1yn−1) ,

t = t⊕ (t div 2s2) ,

yn = (t⊕ (2s3t)) mod 264,

zn = (xn + yn) mod 264

The generator returns zn/264 using only the 32 most significant bits of zn and setting the others
to 0. In his post, Marsaglia suggests the values a = 6906969069, c = 1234567, s1 = 13, s2 = 17
and s3 = 43. Restrictions: a = 3 mod 8 or a = 5 mod 8.

#ifdef USE_LONGLONG
unif01_Gen * umarsa_CreateSupDup64Xor (ulonglong x0, ulonglong y0,

ulonglong a, ulonglong c,
int s1, int s2, int s3);

#endif

Similar to umarsa_CreateSupDup64Add above, except that the combination of the two genera-
tors is with a bitwise exclusive-or:

zn = xn ⊕ yn
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unif01_Gen * umarsa_CreateKISS93 (unsigned int x0, unsigned int y0,
unsigned int z0);

Implements the generator KISS proposed by Marsaglia in [117], which is a combination of a
LCG sequence with two 2-shifts register sequences:

xn = (69069 xn−1 + 23606797) mod 232,

t = yn−1 ⊕
(
217yn−1

)
,

yn = t⊕
(
t div 215

)
mod 232,

t =
(
zn−1 ⊕

(
218zn−1

))
mod 231,

zn = t⊕
(
t div 213

)
The generator returns

(
(xn + yn + zn) mod 232

)
/232. Restrictions: 0 ≤ z0 < 231.

unif01_Gen * umarsa_CreateKISS96 (unsigned int x0, unsigned int y0,
unsigned int z1, unsigned int z2);

Implements the generator KISS proposed by Marsaglia in his test suite DIEHARD [107]:

xn = (69069 xn−1 + 1) mod 232,

t = yn−1 ⊕
(
213yn−1

)
,

t = t⊕
(
t div 217

)
,

yn =
(
t⊕

(
25t

))
mod 232,

zn = (2zn−1 + zn−2 + cn−1) mod 232,

cn = (2zn−1 + zn−2 + cn−1) div 232,

where the xn are a LCG sequence, the yn are a 3-shifts register sequence, and the zn are a
simple multiply-with-carry sequence with cn as the carry (see CreateMWC in module ucarry).
The variable x0 is the seed of the LCG component, y0 is the seed of the shift register com-
ponent, and z1, z2 are the seeds of the multiply-with-carry sequence. The generator returns(
(xn + yn + zn) mod 232

)
/232.

unif01_Gen * umarsa_CreateKISS99 (unsigned int x0, unsigned int y0,
unsigned int z1, unsigned int z2);

Implements the generator KISS proposed by Marsaglia in [109]. It is a combination of a LCG,
a 3-shifts register generator, and two multiply-with-carry generators:

xn = (69069 xn−1 + 1234567) mod 232,

t = yn−1 ⊕
(
217yn−1

)
,

t = t⊕
(
t div 213

)
,

yn =
(
t⊕

(
25t

))
mod 232,

Zn = as in umarsa_CreateMWC97R above

where x0 is the seed of the LCG component, y0 the seed of the 3-shifts register compo-
nent, and z1, z2 the seeds of the multiply-with-carry generators. The generator returns(
((Zn ⊕ xn) + yn) mod 232

)
/232.
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unif01_Gen * umarsa_Create4LFIB99 (unsigned int T[256]);

Implements the 4-lag lagged Fibonacci generator LFIB4 proposed by Marsaglia in [109]. It uses
addition in the form (see also CreateLagFib in module umrg)

Tn = (Tn−55 + Tn−119 + Tn−179 + Tn−256) mod 232.

The generator returns Tn/232. Its period is close to 2287.

unif01_Gen * umarsa_Create3SHR99 (unsigned int y0);

Implements the 3-shift random number generator SHR3 proposed by Marsaglia in [109]:

t = yn−1 ⊕
(
217yn−1

)
,

t = t⊕
(
t div 213

)
,

yn =
(
t⊕

(
25t

))
mod 232.

The generator returns yn/232 and its period is 232 − 1.

unif01_Gen * umarsa_CreateSWB99 (unsigned int T[256], int b);

Implements the subtract-with-borrow generator SWB proposed by Marsaglia in [109]:

bn = I[Tn−222 < Tn−237 + bn−1],
Tn = (Tn−222 − Tn−237 − bn−1) mod 232,

where bn is the borrow and I is the indicator function (see CreateSWB in module ucarry). The
generator returns Tn/232 and its period is close to 27578.

Clean-up functions

void umarsa_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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uknuth

This module collects generators proposed by Donald E. Knuth. Knuth’s code can be
found at http://www-cs-faculty.stanford.edu/~knuth/programs.html. Since there are
global variables in this module, no more than one generator of each type in this module can
be in use at any given time.

#include "unif01.h"

unif01_Gen * uknuth_CreateRan_array1 (long s, long A[100]);

Implements the generator ran_array in its first version as appeared on Knuth’s web site in
2000. It is based on the lagged Fibonacci sequence with subtraction [66], modified via Lüscher’s
method. It generates 1009 numbers from the recurrence

Xj = (Xj−100 −Xj−37) mod 230

out of which only the first 100 are used and the next 909 are discarded, and this process is
repeated. The generator returns Uj = Xj/230. Gives 30 bits of precision.

If the seed s ≥ 0, then Knuth’s initialization procedure is performed: it shifts and transforms
the bits of s in order to get the 100 numbers that make up the initial state; in that case,
array A is unused. If s < 0, then the initial state is taken from the array A[0..99]. This
could be convenient for restarting the generator from a previously saved state. Restrictions:
s ≤ 1073741821.

unif01_Gen * uknuth_CreateRan_array2 (long s, long A[100]);

This implements the new version of ran_array with a new initialization procedure as appeared
on Knuth’s web site in 2002.

unif01_Gen * uknuth_CreateRanf_array1 (long s, double B[100]);

Similar generator to ran_array1 above, but where the recurrence is

Uj = (Uj−100 + Uj−37) mod 1

and is implemented directly in floating-point arithmetic. This implements the first version of
Knuth’s ranf_array as it appeared on his web site in 2000. Array B contains numbers in [0, 1).

unif01_Gen * uknuth_CreateRanf_array2 (long s, double B[100]);

This implements the new version of ranf_array as it appeared on Knuth’s web site in 2002.
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Clean-up functions

void uknuth_DeleteRan_array1 (unif01_Gen *gen);
void uknuth_DeleteRan_array2 (unif01_Gen *gen);
void uknuth_DeleteRanf_array1 (unif01_Gen *gen);
void uknuth_DeleteRanf_array2 (unif01_Gen *gen);

Frees the dynamic memory used by the generators of this module, and allocated by the corre-
sponding Create function.
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utouzin

This module is an interface to random number generators proposed by P. L’Ecuyer and
R. Touzin [164]. They are multiple recursive generators (MRG) or combinations of MRG’s
with coefficients of the form ±2p ± 2q (see the description of MRG’s in module umrg).

#include "unif01.h"

unif01_Gen * utouzin_CreateMRG00a (long s1, long s2, long s3, long s4,
long s5);

Creates a MRG of order 5 of the form

xn =
(
(2− 224)xn−1 − 218xn−3 − 24xn−4 + (211 − 1)xn−5

)
mod m

where m = 231 − 1 and un = xn/m. The parameters s are the seeds.

unif01_Gen * utouzin_CreateMRG00b (long s1, long s2, long s3, long s4,
long s5, long s6);

Creates a MRG of order 6 of the form

xn =
(
(−221 − 1)xn−1 − 212xn−2 + 216xn−3 + 27xn−5 + (1− 227)xn−6

)
mod m

where m = 231 − 1 and un = xn/m. The parameters s are the seeds.

unif01_Gen * utouzin_CreateMRG00c (long s1, long s2, long s3, long s4,
long s5, long s6, long s7);

Creates a MRG of order 7 of the form

xn =
(
−212xn−1 − 220xn−2 + 214xn−3 + 225xn−5 − 26xn−6 + (24 + 1)xn−7

)
mod m

where m = 231 − 19 and un = xn/m. The parameters s are the seeds.

unif01_Gen * utouzin_CreateMRG00d (long s1, long s2, long s3, long s4,
long s5, long s6, long s7, long s8);

Creates a MRG of order 8 of the form

xn =
(
−24xn−1 + 215xn−3 − 212xn−4 + 222xn−5 + 29xn−6 + 227xn−7 + (218 − 2)xn−8

)
mod m

where m = 231 − 1 and un = xn/m. The parameters s are the seeds.

unif01_Gen * utouzin_CreateMRG00e (long s10, long s11, long s12,
long s20, long s21, long s22);

Creates a combined MRG with two components of order 3 of the form

xn =
(
222xn−2 + (27 + 1)xn−3

)
mod m1

yn =
(
215yn−1 + (215 + 1)yn−3

)
mod m2
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where m1 = 231 − 1, m2 = 231 − 21069, and un = ((xn − yn) mod m1) /(m1 + 1) with the
exception of the value 0 which is replaced by un = m1/(m1 + 1). Thus the generator cannot
return the values 0 or 1. The parameters s are the seeds.

unif01_Gen * utouzin_CreateMRG00f (long s10, long s11, long s12,
long s20, long s21, long s22);

Creates a combined MRG with two components of order 3 of the form

xn =
(
214xn−2 + (−226 + 1)xn−3

)
mod m1

yn =
(
217yn−1 + 211yn−3

)
mod m2

where m1 = 231−1, m2 = 231−19, and un = ((xn − yn) mod m1) /(m1 +1) with the exception
of the value 0 which is replaced by un = m1/(m1 + 1). Thus the generator cannot return the
values 0 or 1. The parameters s are the seeds.

unif01_Gen * utouzin_CreateMRG00g (long s10, long s11, long s12,
long s20, long s21, long s22,
long s30, long s31, long s32);

Creates a combined MRG with three components of order 3 of the form

xn =
(
230xn−1 + (219 − 1)xn−3

)
mod m1

yn =
(
223yn−2 + 219yn−3

)
mod m2

zn =
(
211zn−1 + 29zn−2 + 2zn−3

)
mod m3

where m1 = 231−1, m2 = 231−19, m3 = 231−61 and un = ((xn − yn + zn) mod m1) /(m1 +1)
with the exception of the value 0 which is replaced by un = m1/(m1 + 1). Thus the generator
cannot return the values 0 or 1. The parameters s are the seeds.

unif01_Gen * utouzin_CreateMRG00h (long s10, long s11, long s12, long s13,
long s20, long s21, long s22, long s23);

Creates a combined MRG with two components of order 4 of the form

xn =
(
−xn−1 − 213xn−2 + (223 + 1)xn−4

)
mod m1

yn =
(
210yn−1 − 220yn−3 + 27yn−4

)
mod m2

where m1 = 231−1, m2 = 231−19, and un = ((xn − yn) mod m1) /(m1 +1) with the exception
of the value 0 which is replaced by un = m1/(m1 + 1). Thus the generator cannot return the
values 0 or 1.The parameters s are the seeds.

Clean-up functions

void utouzin_DeleteGen (unif01_Gen * gen);

Frees the dynamic memory used by any generator of this module. This function should be called
when a generator is no longer in use.
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ugranger

This module collects combined generators implemented by Jacinthe Granger-Piché for her
master thesis. Some of the generators in this module use the GNU multiprecision package
GMP. The macro USE_GMP is defined in module gdef in directory mylib.

#include "gdef.h"
#include "unif01.h"

unif01_Gen * ugranger_CreateCombLCGInvExpl (
long m1, long a1, long c1, long s1, long m2, long a2, long c2);

Combines an LCG of parameters (m1, a1, c1) and initial state s1 with a non-linear explicit
inversive generator with parameters (m2, a2, c2). The implementation of the LCG uses ei-
ther ulcg_CreateLCGFloat or ulcg_CreateLCG, depending on the parameters (m1, a1, c1), and
the implementation of the inversive generator uses uinv_CreateInvExpl. The combination is
done by adding mod 1 the outputs of the two generators. Restrictions: the same as those for
ulcg_CreateLCG and uinv_CreateInvExpl.

#ifdef USE_GMP
unif01_Gen * ugranger_CreateCombBigLCGInvExpl (

char *m1, char *a1, char *c1, char *s1, long m2, long a2, long c2);

Same as ugranger_CreateCombLCGInvExpl, but the LCG is implemented using arbitrary large
integers with ulcg_CreateBigLCG. Restrictions: the same as those for ulcg_CreateBigLCG and
uinv_CreateInvExpl.

#endif

unif01_Gen * ugranger_CreateCombLCGCub (
long m1, long a1, long c1, long s1, long m2, long a2, long s2);

Combines an LCG of parameters (m1, a1, c1) and initial state s1 with a cubic generator of pa-
rameters (m2, a2) and initial state s2. The LCG implementation is either ulcg_CreateLCGFloat
or ulcg_CreateLCG, depending on the parameters (m1, a1, c1), and the implementation of the
cubic generator is ucubic_CreateCubic1Float. The combination is done by adding mod 1
the outputs of the two generators. Restrictions: the same as those for ulcg_CreateLCG and
ucubic_CreateCubic1Float.

#ifdef USE_GMP
unif01_Gen * ugranger_CreateCombBigLCGCub (

char *m1, char *a1, char *c1, char *s1, long m2, long a2, long c2);

Same as ugranger_CreateCombCubLCG, but the LCG is implemented using arbitrary large in-
tegers with ulcg_CreateBigLCG. Restrictions: the same as those for ulcg_CreateBigLCG and
ucubic_CreateCubic1Float.
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unif01_Gen * ugranger_CreateCombTausBigLCG (
unsigned int k1, unsigned int q1, unsigned int s1, unsigned int SS1,
unsigned int k2, unsigned int q2, unsigned int s2, unsigned int SS2,
char *m, char *a, char *c, char *SS3);

Combines a Tausworthe generator with two components of parameters (k1, q1, s1), (k2, q2, s2)
and initial states SS1 , SS2 with an LCG of parameters (m,a, c) and initial state SS3 . The
combination is done by adding mod 1 the outputs of the LCG and of the combined Tausworthe.
The implementation of the LCG is the one in ulcg_CreateBigLCG, and the implementation of
the combined Tausworthe is the one in utaus_CreateCombTaus2. Restrictions: the same as
those for utaus_CreateCombTaus2 and ulcg_CreateBigLCG.

#endif

unif01_Gen * ugranger_CreateCombTausLCG21xor (
unsigned int k1, unsigned int q1, unsigned int s1, unsigned int SS1,
unsigned int k2, unsigned int q2, unsigned int s2, unsigned int SS2,
long m, long a, long c, long SS3);

Combines a Tausworthe generator with two components of parameters (k1, q1, s1), (k2, q2, s2)
and initial states SS1 , SS2 with an LCG of parameters (m,a, c) and initial state SS3 . The
combination is done using a bitwise exclusive-or of the outputs of the two generators. The im-
plementation of the LCG is either the one in ulcg_CreateLCGFloat or in ulcg_CreateLCG, de-
pending on the parameters (m,a, c), and the implementation of the combined Tausworthe is the
one in utaus_CreateCombTaus2. Restrictions: the same as those for utaus_CreateCombTaus2
and ulcg_CreateLCG.

unif01_Gen * ugranger_CreateCombTausCub21xor (
unsigned int k1, unsigned int q1, unsigned int s1, unsigned int SS1,
unsigned int k2, unsigned int q2, unsigned int s2, unsigned int SS2,
long m, long a, long SS3);

Combines a Tausworthe generator with two components of parameters (k1, q1, s1), (k2, q2, s2)
and initial states SS1 , SS2 with a cubic generator of parameters (m,a) and initial state SS3 .
The combination is done using a bitwise exclusive-or of the outputs of the two generators. The
implementation of the combined Tausworthe is the one in utaus_CreateCombTaus2, and the
implementation of the cubic generator is the one in ucubic_CreateCubic1Float. Restrictions:
the same as those for utaus_CreateCombTaus2 and ucubic_CreateCubic1Float.

unif01_Gen * ugranger_CreateCombTausInvExpl21xor (
unsigned int k1, unsigned int q1, unsigned int s1, unsigned int SS1,
unsigned int k2, unsigned int q2, unsigned int s2, unsigned int SS2,
long m, long a, long c);

Combines a Tausworthe generator with two components of parameters (k1, q1, s1), (k2, q2, s2)
and initial states SS1 , SS2 with an explicit inversive generator of parameters (m,a, c). The
combination is done using a bitwise exclusive-or of the outputs of the two generators. The
implementation of the combined Tausworthe is the one in utaus_CreateCombTaus2, and the
implementation of the inversive generator is the one in uinv_CreateInvExpl. Restrictions: the
same as those for utaus_CreateCombTaus2 and uinv_CreateInvExpl.
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Clean-up functions

void ugranger_DeleteCombLCGInvExpl (unif01_Gen *gen);
void ugranger_DeleteCombLCGCub (unif01_Gen *gen);
void ugranger_DeleteCombTausLCG21xor (unif01_Gen *gen);
void ugranger_DeleteCombTausCub21xor (unif01_Gen *gen);
void ugranger_DeleteCombTausInvExpl21xor (unif01_Gen *gen);

#ifdef USE_GMP
void ugranger_DeleteCombBigLCGInvExpl (unif01_Gen *gen);
void ugranger_DeleteCombBigLCGCub (unif01_Gen *gen);
void ugranger_DeleteCombTausBigLCG (unif01_Gen *gen);

#endif

Frees the dynamic memory allocated by the corresponding Create function of this module.

71



uwu

This module collects some generators from Pei-Chi Wu.

#include "gdef.h"
#include "unif01.h"

#ifdef USE_LONGLONG
unif01_Gen * uwu_CreateLCGWu61a (longlong s);

Implements a LCG proposed by Wu [177], with m = 261 − 1, a = 230 − 219, c = 0. Uses a fast
implementation with shifts rather than multiplications. It uses 64-bits integers.

unif01_Gen * uwu_CreateLCGWu61b (longlong s);

Similar to uwu_CreateLCGWu61a, but with a = 242 − 231.
#endif

Clean-up functions

void uwu_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called to clean up a generator object when it is no
longer in use.

See also

• ulcg_CreateLCGWu2
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udeng

This module collects some generators from Lih-Yuan Deng and his collaborators.

#include "unif01.h"

unif01_Gen * udeng_CreateDL00a (unsigned long m, unsigned long b, int k,
unsigned long S[]);

Creates a multiple recursive generator proposed by Deng and Lin [22] in the form:

xi = ((m− 1)xi−1 + bxi−k) mod m = (−xi−1 + bxi−k) mod m.

The generator returns ui = xi/m. The initial state (x−1, . . . , x−k) is in S[0..(k-1)]. Restric-
tion: k ≤ 128.

unif01_Gen * udeng_CreateDX02a (unsigned long m, unsigned long b, int k,
unsigned long S[]);

Creates a multiple recursive generator proposed by Deng and Xu [23] in the form:

xi = b(xi−1 + xi−k) mod m.

The generator returns ui = xi/m. The initial state (x−1, . . . , x−k) is in S[0..(k-1)]. Restric-
tion: k ≤ 128.

Clean-up functions

void udeng_DeleteGen (unif01_Gen * gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called when a generator is no longer in use.
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uweyl

This module implements simple and combined generators based on Weyl sequences, pro-
posed by Holian et al. [53].

#include "unif01.h"

unif01_Gen * uweyl_CreateWeyl (double alpha, long n0);

Implements a generator defined by the Weyl sequence:

un = nα mod 1 = (un−1 + α) mod 1, (2.27)

where α = alpha is a real number in the interval (0, 1). The initial value of n is n0. In theory, if
α is irrationnal, this sequence is asymptotically equidistributed over (0,1) [170]. However, this
is not true for the present implementation, because α is represented only with finite precision.
The implementation is only a rough approximation, valid when n is not too large. Some possible
values for α are:

√
2 mod 1 = 0.414213562373095√
3 mod 1 = 0.732050807568877
π mod 1 = 0.141592653589793
e mod 1 = 0.718281828459045

γ = 0.577215664901533

unif01_Gen * uweyl_CreateNWeyl (double alpha, long n0);

Implements a nested Weyl generator, as suggested in [53], defined by

un = (n (nα mod 1)) mod 1, (2.28)

where alpha = α ∈ (0, 1). The initial value of n is n0.

unif01_Gen * uweyl_CreateSNWeyl (long m, double alpha, long n0);

Implements a nested Weyl generator with “shuffling”, proposed in [53], and defined by

νn = m (n (nα mod 1) mod 1) + 1/2, un = (νn (νnα mod 1)) mod 1,

where m is a large positive integer and alpha = α ∈ (0, 1). The initial value of n is n0.

Clean-up functions

void uweyl_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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unumrec

Implements the generators proposed in Numerical Recipes: Portable Random Number
Generators [138, 137].

#include "unif01.h"

unif01_Gen * unumrec_CreateRan0 (long s);

Creates and initializes the generator Ran0 with the seed s. Restriction: 0 < s < 231.

unif01_Gen * unumrec_CreateRan1 (long s);

Creates and initializes the generator Ran1 with the seed s. Restriction: 0 < s < 231.

unif01_Gen * unumrec_CreateRan2 (long s);

Creates and initializes the generator Ran2 with the seed s. Restriction: 0 < s < 231.

Clean-up functions

void unumrec_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator returned by the Create functions of this
module. This function should be called to clean up any generator object of this module when
it is no longer in use.
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uautomata

This module implements generators based on cellular automata. A cellular automaton
consists of a d-dimensional grid of cells, whose coordinates are the integer points in the
d-dimensional euclidean lattice L = Zd. Each cell can hold a value taken from a discrete set
(for now, only binary values 0 and 1 are implemented). The value x at each cell i evolves
deterministically with (discrete) time according to a set of rules involving the values of its
nearest neighbours. For a one-dimensional cellular automaton with neighbourhood of radius
r, the value of a cell at a given time depends on its value at the previous time step as well
as the values of the r closest cells on the left and the r closest cells on the right, all at the
previous time step. The evolution of cell i can thus be written as

x
(t+1)
i = F

[
x

(t)
i−r, . . . , x

(t)
i , . . . , x

(t)
i+r

]
,

where t represents discrete time. These rules are applied synchronously to each cell at every
time step. Here, only uniform cellular automata are considered, for which the rules are
identical for all cell. See [175, 176, 162] for the theory of cellular automata.

In the current implementation, periodic boundary conditions are imposed on the grid of
cells, so that cells on oppposite boundaries are considered adjacent. For example, for a one-
dimensional grid with N cells, the condition SN = S0 applies. Similarly, a two-dimensional
grid is considered as a torus.

#include "unif01.h"

unif01_Gen * uautomata_CreateCA1 (int N, int S[ ], int r, int F[ ],
int k, int ts, int cs, int rot);

Initializes a generator based on a 1-dimensional Boolean uniform cellular automaton made up
of N cells, with a rule F of radius r, and an initial state S. A rule of radius r is such that only
the r nearest neighbors on each side of a cell are involved in determining the value of the cell
at the next time step. Thus each cell has 2r + 1 neighbors, including itself. The initial value of
cell i is given in S[i] and can take values 0 and 1 only.

The rule is specified by the 22r+1 elements of array F indexed in standard numerical order, with
an entry for every possible neighborhood configuration of states. A given entry is such that at
the next time step, cell i takes the value obtained from the rule when the 2r + 1 neighbour cell
values are given by the binary representation of j. The following table shows an example of a
local rule when r = 1.

j 7 6 5 4 3 2 1 0
xi−1, xi, xi+1 111 110 101 100 011 010 001 000

new xi 0 0 0 1 1 1 1 0

Each of the 22r+1 = 8 possible sets of values for a cell and its 2 nearest neighbours appear on
the middle line, while the lower line gives the value to be taken by the central cell on the next
time step. For this rule, array F must have the following form: F = {0, 1, 1, 1, 1, 0, 0, 0}. In
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Wolfram’s numbering scheme for one-dimensional automata [175] and in the litterature, this
rule is called rule 30 because the lower line of the table is the binary representation of 30.

In order to generate random numbers from this automaton, only k cells are used, starting count
at the center of the grid. Assuming that the parameters ts and cs are 0, then 32 time steps will
be used to generate k random integers, the 32 bits of a cell over time making up one random
number. For example, if N = 10 and k = 3, then only cells 4, 5, 6 will be used to generate
random numbers, though all the cells contribute to the evolution of the cellular automaton.

The parameters ts and cs implements time spacings and cell spacings respectively. Thus only
the bits generated at every ts+ 1 time step are considered as part of the random sequence, the
bits generated at the ts successive time steps in-between are disregarded. For example, if ts
= 1, one keeps only the bits at 1 time step out of 2 to build the random numbers. The default
value is ts = 0. Similarly, only cells spaced cs+ 1 apart are used to generate random numbers;
the output of the cs cells in-between is not considered part of the random sequence, though
they still contribute to the evolution of the cellular automaton. For example, if N = 20, k = 3
and cs = 2, then only the bits generated by cells 7, 10, 13 are used to make up the random
numbers returned by the cellular automaton. The default value is cs = 0.

The parameter rot indicates a circular shift of the cells at each time step. If rot > 0, the value
of cell i at the end of each time step will become the value of cell (i + rot) mod N before going
to the next time step. If rot < 0, cell i will become the value of cell (i− rot) mod N instead.
There is no shift when rot = 0.

Restrictions: k ∗ (cs + 1) ≤ N + cs.

unif01_Gen * uautomata_CreateCA90mp (int m, int S[]);

Implements Matsumoto’s cellular automaton CA90 (m)′ (see [123]). It is a uniform boolean
one-dimensional automaton with m cells based on rule 90 (as defined by Wolfram in [174]),
i.e., the value of a cell at time t + 1 depends only on the state of its two closest neighbors
at time t and is given by xi(t + 1) = xi−1(t) + xi+1(t) mod 2. There are two extra cells that
implements the boundary conditions at both ends. The null boundary condition, x0(t) ≡ 0, is
applied permanently at the left end, while the mirror boundary condition, xm+1(t) = xm(t), is
applied permanently at the right end. The output is the value of cell m. Thus each time step
generates one bit of output and 32 time steps generate one 32-bit integer. The initial state of
the cells must be given in S[j] for j = 1, 2, . . . ,m. Restriction: S[j] ∈ {0, 1}.

Clean-up functions

void uautomata_DeleteCA90mp (unif01_Gen *gen);

Frees the dynamic memory allocated by uautomata_CreateCA90mp.

void uautomata_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called when a generator is no longer in use.
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ucrypto

This module implements different versions of some random number generators proposed
or used in the world of cryptology.

#include "unif01.h"

typedef enum {
ucrypto_OFB, /* Output Feedback mode */
ucrypto_CTR, /* Counter mode */
ucrypto_KTR /* Key counter mode */
} ucrypto_Mode;

Block modes of operation [26] for this module. Given an algorithm (for example, encryption or
hashing) used as a generator of random numbers, then the output feedback mode (OFB) uses the
result of the last application of the algorithm as input block for the current application. The
counter mode (CTR) applies the algorithm on a counter used as input and incremented by 1 at
each application. The key counter mode (KTR) applies the algorithm on the seed with a different
key at each application of the algorithm; the key is incremented by 1 before each application.

unif01_Gen * ucrypto_CreateAES (unsigned char *Key, int klen,
unsigned char *Seed, ucrypto_Mode mode,
int r, int s);

Uses the Advanced Encryption standard (AES) as a source of random numbers [19, 130, 52, 3],
based on the optimized C code for the Rijndael cipher written by V. Rijmen, A. Bosselærs and
P. Barreto [144]. klen is the number of bits in the cipher Key, which must be given as an array
of 16, 24 or 32 bytes for a key of 128, 192 or 256 bits, respectively. Seed is the initial state,
which must be an array of 16 bytes making in all 128 bits. At each encryption step j, the AES
encryption algorithm is applied on the input block to obtain a new block of 128 bits (16 bytes).
Of these, the first r bytes are dropped and the next s bytes are used to build 32-bit random
numbers. Each call to the generator returns a 32-bit random number. For example, if r = 2
and s = 8, then the 16 (8r) most significant bits of the block are dropped and the next 64 (8s)
bits are used to make two 32-bit random numbers which will be returned by the next two calls
to the generator. Restrictions: klen ∈ {128, 192, 256}, 0 ≤ r ≤ 15, 1 ≤ s ≤ 16, and r + s ≤ 16.

Let C = E(K, T ) denote the AES encryption operation with key K on plain text T resulting
in encrypted text C.

• For the OFB mode, each new block of 128 bits Cj is obtained by Cj = E(K, Cj−1), where
C0 = Seed.

• The CTR mode uses a 128-bit counter i whose initial value is equal to Seed, and which is
incremented by 1 at each encryption step j. Each new block of 128 bits Cj is obtained by
Cj = E(K, i).

• The KTR mode uses a counter i as the key which is incremented by 1 at each encryption step
j as i = i + 1. Each new block of 128 bits Cj is obtained by Cj = E(i, Seed), where the
initial value of i is Key viewed as an integer.
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unif01_Gen * ucrypto_CreateSHA1 (unsigned char *Seed, int len,
ucrypto_Mode mode, int r, int s);

Uses the Secure Hash Algorithm SHA-1 as a source of random numbers [131, 3]. Seed is an
array of size len used to initialize the generator. At each hashing step j, the SHA-1 algorithm
is applied on the input block to obtain a hashed string of 160 bits (20 bytes). Of these, the
first r bytes are dropped and the next s bytes are used to build 32-bit random numbers. Each
call to the generator returns a 32-bit random number. For example, if r = 2 and s = 8, then
the 16 (8r) most significant bits of the 160-bit string are dropped and the next 64 (8s) bits are
used to make two 32-bit random numbers which will be returned by the next two calls to the
generator. Restrictions: len ≤ 55, 0 ≤ r ≤ 19, 1 ≤ s ≤ 20, and r + s ≤ 20.

Let C = H(T ) denote the SHA-1 operation applied on the original text T hashed to the 160-bit
string C. (When T is too short, it is padded automatically by the SHA-1 algorithm to have the
required block length of 512 bits.)

• For the OFB mode, each new block of 160 Cj is obtained by Cj = H(Cj−1), where C0 =
H(Seed).

• The CTR mode uses a 440-bit counter i whose initial value is equal to Seed, and which is
incremented by 1 at each hashing step j. Each new block of 160 bits Cj is obtained by
Cj = H(i).

unif01_Gen * ucrypto_CreateISAAC (int flag, unsigned int A[256]);

This is the generator ISAAC (Indirection, Shift, Accumulate, Add, and Count), proposed and
implemented by Bob Jenkins Jr. in [57]. The version used here is the one recommended for
cryptography, with RANDSIZL = 8. If flag = 0, the array A is not used and the initial state
is obtained from a complicated initialization procedure used in Jenkins’ implementation. 1 If
flag = 1, the array A is used and transformed by Jenkins’ initialization procedure to obtain the
initial state. If flag = 2, the array A is used as the starting state. Restriction: flag ∈ {0, 1, 2}.

Clean-up functions

void ucrypto_DeleteAES (unif01_Gen * gen);
void ucrypto_DeleteSHA1 (unif01_Gen * gen);
void ucrypto_DeleteISAAC (unif01_Gen * gen);

Frees the dynamic memory used by the generators of this module, and allocated by the corre-
sponding Create function.

1From Richard: In his test program in file rand.c, Jenkins outputs the ISAAC random numbers as
randrsl[0], randrsl[1], randrsl[2], . . . In TestU01, they are outputted in the order randrsl[255],
randrsl[254], randrsl[253], . . . , because it is simpler.
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usoft

This module implements (or, in some cases, provides an interface to) some random num-
ber generators used in popular software products. The macros of the form USE_... are
defined in module gdef in directory mylib.

#include "gdef.h"
#include "unif01.h"

unif01_Gen * usoft_CreateSPlus (long S1, long S2);

Generator used in the statistical software environment S-PLUS [146, 122]. It is based on
Marsaglia’s Super-Duper generator of 1973 (see the description of SupDup73 on page 61 of this
guide). See also the Web page at http://www.insightful.com/support/faqdetail.asp?
FAQID=166&IsArchive=0. The generator never returns 0. Restrictions: 0 < S1 < 231 − 1 and
0 < S2 < 231 − 1.

#ifdef HAVE_RANDOM
unif01_Gen * usoft_CreateUnixRandom (unsigned int s);

#endif

Provides an interface to the set of five additive feedback random number generators imple-
mented in the function random() in the Unix or Linux C library stdlib (see the documentation
of random). It uses a default table of long integers to return successive pseudo-random numbers.
The size of the state array determines the period of the random number generator; increasing
the state array size increases the period. The parameter s determines the order of the re-
currence. This generator is not part of the standard ANSI C library. Since it uses global
variables, no more than one generator of this type can be in use at any given time. Restrictions:
s ∈ {8, 32, 64, 128, 256}.

#ifdef USE_LONGLONG
unif01_Gen * usoft_CreateJava48 (ulonglong s, int jflag);

#endif

Implements the same generator as the method nextDouble, in class java.util.Random of the
Java standard library (http://java.sun.com/j2se/1.4.2/docs/api/java/util/Random.html).
It is based on a linear recurrence with period length 248, but each output value is constructed
by taking two successive values from the linear recurrence, as follows:

xi+1 = (25214903917 xi + 11) mod 248

ui =
227bx2i/222c+ bx2i+1/221c

253
.

Note that the generator rand48 in the Unix standard library uses exactly the same recurrence,
but produces its output simply via ui = xi/248. If jflag > 0, s is transformed via “s =
s^0x5DEECE66D” at initialization, as is done in the Java class Random; one will then obtain the
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same numbers as in Java Random with the given seed. If jflag = 0, s is used directly as initial
seed. Restriction: s < 281474976710656.

unif01_Gen * usoft_CreateExcel2003 (int x0, int y0, int z0);

This is the generator implemented by the RAND function in Microsoft Office Excel 2003
(see http://support.microsoft.com/default.aspx?scid=kb;en-us;828795). It uses the
Wichmann-Hill generator [171, 172]

xi = 170 xi−1 mod 30323
yi = 172 yi−1 mod 30307
zi = 171 zi−1 mod 30269

ui =
( xi

30323
+

yi

30307
+

zi

30269

)
mod 1.

The Wichmann-Hill generators are described in this guide on page 26. The Excel generator
is equivalent to the call ulcg_CreateCombWH3 (30323, 30307, 30269, 170, 172, 171, 0,
0, 0, x0, y0, z0). The initial seeds are x0, y0 and z0. Restrictions: 0 < x0 < 30323,
0 < y0 < 30307 and 0 < z0 < 30269.

unif01_Gen * usoft_CreateVisualBasic (unsigned long s);

The random number generator included in Microsoft VisualBasic. It is an LCG defined as:

xi = (1140671485 xi−1 + 12820163) mod 224; ui = xi/224

(see http://support.microsoft.com/support/kb/articles/Q231/8/47.ASP). The parame-
ter s gives the seed x0. Note that the multiplier 1140671485 in the equation above is equivalent
to 16598013, since 1140671485 mod 224 = 16598013.

#if defined(USE_GMP) && defined(USE_LONGLONG)
unif01_Gen * usoft_CreateMaple_9 (longlong s);

#endif

Implements the generator included in Maple 9.5 and earlier versions. It is a linear congruential
generator (see the definition on page 23) with m = 999999999989, a = 427419669081 and c = 0.
The seed is s. Restriction: 0 < s < 999999999989. Note: Maple 10 uses the Mersenne twister
MT19937 as its basic generator (see page 40 of this guide).

#ifdef USE_LONGLONG
unif01_Gen * usoft_CreateMATLAB (int i, unsigned int j, int bf,

double Z[]);
#endif

Implements the basic generator (function rand) included in MATLAB [128] to generate uniform
random numbers. It is a combination of the subtract-with-borrow generator (2.29) proposed in
[116], where z is an array of 32 floating-point numbers in [0, 1) and b is a borrow flag, with the
Xorshift generator (2.30) described in [111]:

zi = zi+20 − zi+5 − b (2.29)
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j ˆ= (j � 13); j ˆ= (j � 17); j ˆ= (j � 5); (2.30)

The combination is done by taking the bitwise exclusive-or of the bits of the mantissa of zi with
a 52-bit shifted version of j, and this gives the mantissa of the returned number in [0, 1). If
i < 0, then j, bf and Z are unused, and the generator is initialized using the same procedure as
the one described in Cleve Moler’s MATLAB M -file randtx.m (see http://www.mathworks.
com/moler/ncm/randtx.m) when z is empty. If i ≥ 0, then j, bf and Z are used as initial
values for the generator state. If the flag bf = 0, then the initial borrow is set to b = 0, while
if bf 6= 0, then it is set to b = 2−53. Restrictions: i < 32, bf ∈ {0, 1}, and 0 < Z[i] < 1.

Another uniform generator included in MATLAB is used to generate normal random variables.
It is Marsaglia’s additive SuperDuper of 1996, with c = 1234567, described on page 61 of
this guide (see umarsa_CreateSupDup96Add). MATLAB includes also the Mersenne twister
generator of Matsumoto and Nishimura [126] (see ugfsr_CreateMT19937 on page 40 of this
guide).

#ifdef HAVE_MATHEMATICA
unif01_Gen * usoft_CreateMathematicaReal (int argc, char * argv[],

long s);
#endif

This provides an interface to the random number generator for real numbers in [0, 1) imple-
mented by function “Random[ ]” of Mathematica 5 and earlier releases (see the web site of
Wolfram Research Inc. at http://www.wolfram.com). It is a subtract-with-borrow generator
(described on page 31 of this guide) of the type proposed by Marsaglia and Zaman in [116],
apparently of the form xi = (xi−8 − xi−48 − c) mod 231, and each returned number in [0,1)
uses two successive numbers of the recurrence to get a double of 53 bits. The parameters argc
and argv are the usual arguments of the “main” function and the parameter s is the initial
seed. The random numbers are generated in batches of 218 = 262144 numbers, for greater
speed. Since this generator uses file variables, no more than one generator of this type can
be in use at any given time. See the documentation in module gdef of MyLib concerning the
macro HAVE_MATHEMATICA. If the executable program is called, say tulip, then the program
is launched on a Unix/Linux platform by the command tulip -linkname ’math -mathlink’
-linklaunch.

#ifdef HAVE_MATHEMATICA
unif01_Gen * usoft_CreateMathematicaInteger (int argc, char * argv[],

long s);
#endif

Provides an interface to the random number generator for integers in [0, 230 − 1] implemented
by function “Random[Integer, 230 − 1]” of Mathematica 5 and earlier releases. It is based on
a cellular automata with rule 30 proposed by Wolfram [175]. See also the documentation of
usoft_CreateMathematicaReal above.
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Clean-up functions

#ifdef USE_LONGLONG
void usoft_DeleteMATLAB (unif01_Gen *gen);

#endif

Frees the dynamic memory used by the MATLAB generator and allocated by the corresponding
Create function above.

#ifdef HAVE_MATHEMATICA
void usoft_DeleteMathematicaReal (unif01_Gen *);
void usoft_DeleteMathematicaInteger (unif01_Gen *);

Frees the dynamic memory used by the Mathematica generators and allocated by the corre-
sponding Create function above.

#endif

#ifdef HAVE_RANDOM
void usoft_DeleteUnixRandom (unif01_Gen *);

Frees the dynamic memory used by the UnixRandom generator and allocated by the correspond-
ing Create function above.

#endif

#if defined(USE_GMP) && defined(USE_LONGLONG)
void usoft_DeleteMaple_9 (unif01_Gen *gen);

Frees the dynamic memory used by the Maple generator and allocated by the corresponding
Create function above.

#endif

void usoft_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called to clean up a generator object when it is no
longer in use.
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uvaria

Implements various special generators proposed in the litterature.

#include "unif01.h"

unif01_Gen * uvaria_CreateACORN (int k, double S[]);

Initializes a generator ACORN (Additive COngruential Random Number) [173] of order k and
whose initial state is given by the vector S[0..(k-1)].

unif01_Gen * uvaria_CreateCSD (long v, long s);

Implements the generator proposed by Sherif and Dear in [151]. The initial state of the gen-
erator is given by v. The generator uses a MLCG generator whose initial state is given by s.
Restrictions: 0 ≤ v ≤ 9999 and 0 < s < 231 − 1.

unif01_Gen * uvaria_CreateRanrotB (unsigned int seed);

This is a lagged-Fibonacci-type random number generator, but with a rotation of bits, called
RANROT, and proposed by Fog [42]. The variant programmed here is RANROT of type B.
The algorithm is:

Xn = ((Xn−j rotl r1) + (Xn−k rotl r2)) mod 2b

where rotl denotes a left rotation of the bits, each Xn is an unsigned int, and b is the number
of bits in an unsigned int. The output value is un = Xn/2b. The last k values of X are stored
in a circular buffer (here of size 17, with r1 = 5 and r2 = 3). Information about RANROT
generators can be found at http://www.agner.org/random/.

Since Fog’s code is copied verbatim here, there are global variables in the implementation. Thus
no more than one generator of that type can be in use at any given time.

unif01_Gen * uvaria_CreateRey97 (double a1, double a2, double b2, long n0);

Generator proposed by W. Rey [143]. It uses the recurrence:

zi = a1 sin(b1(i + n0)) mod 1; (2.31)
ui = (a2 + zi) sin(b2z) mod 1, (2.32)

where b1 = (
√

5 − 1)π/2. According to the author, a1, a2 and b2 should be chosen sufficiently
large.

unif01_Gen * uvaria_CreateTindo (long b, long Delta, int s, int k);

Initializes the parameters of the generator proposed by Tindo in [161], with a0 = b − Delta
and a1 = Delta + 1. Assumes that 0 < Delta < b − 1 and b < 215 = 32768. Restrictions:
1 ≤ k ≤ 32, 1 ≤ s ≤ 32.
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Clean-up functions

void uvaria_DeleteACORN (unif01_Gen *gen);

Frees the dynamic memory used by the ACORN generator and allocated by the corresponding
Create function above.

void uvaria_DeleteRanrotB (unif01_Gen *gen);

Frees the dynamic memory used by the RanrotB generator and allocated by the corresponding
Create function above.

void uvaria_DeleteGen (unif01_Gen *gen);

Frees the dynamic memory used by any generator of this module that does not have an explicit
Delete function. This function should be called to clean up a generator object when it is no
longer in use.
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ufile

This module allows the implementation of generators in the form of numbers read directly
from an arbitrary file. No more than one generator of each type in this module can be in
use at any given time.

#include "unif01.h"

unif01_Gen * ufile_CreateReadText (char *fname, long nbuf);

Reads numbers (assumed to be in text format) from input file fname. The numbers must be
floating-point numbers in [0, 1), separated by whitespace characters. Numbers in the file can be
grouped in any way: there may be blank lines, some lines may contain many numbers, others
only one. The file must contain only valid real numbers, nothing else. The numbers are read in
batches of nbuf at a time and kept in an array (if nbuf is very large, a smaller but still large
array will be used instead).

void ufile_InitReadText (void);

Reinitializes the generator obtained from ufile_CreateReadText to the beginning of the file.

unif01_Gen * ufile_CreateReadBin (char *fname, long nbuf);

Reads numbers from input file fname. This file is assumed to be in binary format. The numbers
are read in batches of 4 nbuf unsigned char’s at a time, transformed into nbuf unsigned 32-bit
integers and kept in an array (if nbuf is very large, a smaller but still large array will be used
instead). This function is used in order to test (random) bit sequences kept in a file.

void ufile_InitReadBin (void);

Reinitializes the generator obtained from ufile_CreateReadBin to the beginning of the file.

Clean-up functions

void ufile_DeleteReadText (unif01_Gen *);

Closes the file and frees the dynamic memory allocated by ufile_CreateReadText.

void ufile_DeleteReadBin (unif01_Gen *);

Closes the file and frees the dynamic memory allocated by ufile_CreateReadBin.
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Useful functions

void ufile_Gen2Bin (unif01_Gen *gen, char *fname, double n, int r, int s);

Creates the file fname containing n random bits using the output of generator gen. From each
random number returned by gen, the r most significant bits will be dropped and the s following
bits will be written to the file until n bits have been written. Restriction: s ∈ {8, 16, 24, 32}.
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Chapter 3

STATISTICAL TESTS

This chapter describes the different statistical tests available in TestU01 and how they can
be applied. These tests are organized in different modules, sometimes according to their
similarity and sometimes according to the author of the book/article from which they were
taken. Each test looks, in its own way, for empirical evidence against the null hypothesis H0

defined in the introduction. It computes a test statistic Y whose distribution under H0 is
known (or for which a good approximation is available).

Single-level tests.

A first-order (or single-level) test observes the value of Y , say y, and rejects H0 if the
p-value (or significance level)

p = P [Y ≥ y | H0]

is much too close to either 0 or 1. If the distribution of Y is [approximately] continuous,
p is [approximately] a U(0, 1) random variable under H0. Sometimes, this p can be viewed
as a measure of uniformity, in the sense that it will be close to 1 if the generator produces
its values with excessive uniformity, and close to 0 in the opposite situation (see, e.g., the
module smultin).

In the case where Y has a discrete distribution under H0, we distinguish the right p-value
pR = P [Y ≥ y | H0] and the left p-value pL = P [Y ≤ y | H0]. We then define the p-value as

p =


pR, if pR < pL

1− pL, if pR ≥ pL and pL < 0.5

0.5 otherwise.

Why such a definition? Consider for example a Poisson random variable Y with mean 1
under H0. If Y takes the value 0, the right p-value is pR = P [Y ≥ 0 | H0] = 1. In the
uniform case, this would obviously lead to rejecting H0 on the basis that the p-value is too
close to 1. However, P [Y = 0 | H0] = 1/e ≈ 0.368, so it does not really make sense to reject
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H0 in this case. In fact, the left p-value here is pL = 0.368, and the p-value computed with
the above definition is p = 1− pL ≈ 0.632. Note that if pL is very small, with this definition,
p becomes close to 1. If the left p-value was defined as pL = 1 − pR = P [Y < y | H0], this
would also lead to problems; in the example, one would have pL = 0.

Two-level tests.

In a second-order (or two-level) test, one generates N “independent” copies of Y , say
Y1, . . . , YN , by replicating the first-order test N times. Let F be the theoretical distribution
function of Y under H0. In the case where F is continuous, the transformed observations
U1 = F (Y1), . . . , UN = F (YN) should behave as i.i.d. uniform random variables. One way
of performing the two-level test is to compare the empirical distribution of these Uj’s to the
uniform distribution, via a goodness-of-fit (GOF) test such as those of Kolmogorov-Smirnov,
Anderson-Darling, Crámer-von Mises, etc. These GOF test statistics are defined in module
gofs and their p-values are computed by the functions of module gofw (these two modules
are in library ProbDist). For example, if d+

N is the sample value taken by the Kolmogorov-
Smirnov statistic D+

N (defined in module gofs), the corresponding p-value at the second level
is δ+ = P [D+

N > d+
N |H0]. Under H0, δ+ has the U(0, 1) distribution.

In TestU01, several of these GOF tests can actually be applied simultaneously, and all
their p-values are reported in the results. Those that are too close to 0 or 1 are marked by
special indicators in the printouts. The GOF tests that are applied are those that belong to
the set gofw_ActiveTests. This kind of flexibility is sometimes convenient for comparing
the power of these GOF tests to detect the weaknesses of specific classes of generators.

This type of two-level testing procedure has been widely applied for testing RNGs [40,
66, 74, 99, 103]. The arguments supporting it are that (i) it sometimes permits one to apply
the test with a larger total sample size to increase its power (for example, if the memory
size of the computer limits the sample size of a single-level test), and (ii) it tests the RNG
sequence at the local level, not only at the global level (i.e., there could be very bad behavior
over short subsequences, which cancels out when averaging over larger subsequences). As
an example of this, consider the extreme case of a generator whose output values are i/231,
for i = 1, 2, . . . , 231 − 1, in this order. A simple test of uniformity over the entire sequence
would give a perfect fit, whereas the same test applied repeatedly over (disjoint) shorter
sub-sequences would easily detect the anomaly.

Another way of performing the test at the second level is to simply add the N observations
of the first level and reject H0 if the sum is too large or too small. For the great majority
of the tests in this library, the distribution of Y is either chi-square, normal, or Poisson. In
these three cases, the sum Ỹ = Y1 + · · · + YN has the same type of distribution. That is,
if Y is chi-square with k degrees of freedom [resp., normal with mean µ and variance σ2,
Poisson with mean λ], Ỹ is chi-square with Nk degrees of freedom [resp., normal with mean
Nµ and variance N2σ2, Poisson with mean Nλ]. TestU01 usually reports the results of the
test based on Ỹ in these situations, in addition to the second-order GOF tests specified by
gofs_ActiveTests (for the Poisson case, where the second-order GOF tests are not valid
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unless λ is large enough for the Poisson distribution to be well approximated by a normal,
only the results of the tests base on Ỹ are reported).

Our empirical investigations indicate that for a fixed total sample size Nn, when testing
RNGs, a test with N = 1 is often more efficient than the corresponding test with N > 1.
. This means that for typical RNGs, the type of structure found in one (reasonably long)
subsequence is usually found in (practically) all subsequences of the same length. In other
words, when a RNG started from a given seed fails spectacularly a certain test, it usually
fails that test for most admissible seeds, though there are some exceptions. In the case
where N > 1, the test based on Ỹ is usually more powerful than the second-order GOF tests
comparing the empirical distribution of F (Y1), . . . , F (YN) to the uniform, according to our
experience.

Rejecting H0.

In statistical studies where a limited amount of data is available, people sometimes fix
the significance level α in advance to arbitrary values such as 0.05 or 0.01, and reject H0 if
and only if the p-value is below α. However, statisticians often recommend to just report the
p-value, because this provides more information than reporting a “reject” or “do not reject”
verdict based on a fixed α.

When a p-value is extremely close to 0 or to 1 (for example, if it is less than 10−10),
one can obviously conclude that the generator fails the test. If the p-value is suspicious
but failure is not clear enough, (p = 0.0005, for example), then the test can be replicated
independently until either failure becomes obvious or suspicion disappears (i.e., one finds
that the suspect p-value was obtained only by chance). This approach is possible because
there is no limit (other than CPU time) on the amount of data that can be produced by a
RNG to increase the sample size and the power of the test.

Common parameters and tools.

Three parameters, called N , n, and r, are common to all the functions that apply a test
in the s modules. The parameter N gives the number of independent replications of the base
test, i.e. the number of distinct subsequences on which it is applied, and n is the sample size
for each replication. The parameter r gives the number of bits that are discarded from each
generated random number. That is, each real-valued random number is multiplied by 2r

modulo 1, to drop its r most significant bits. These three parameters are not re-explained in
each test description. It is implicit that the first r bits of each uniform are always discarded,
that the test explained in the function description is always replicated N times, and that a
two-level test is applied whenever N > 1.

For the tests based on bit strings, another parameter that usually appears is s. It
represents the number of bits of each uniform that are effectively used by the test. That is,
when s appears, the test drops the r most significant bits and takes the s bits that follow.
In this case, it is important to make sure that r + s does not exceed the number of bits of
precision provided by the RNG. For example, if the RNG’s output is always a multiple of
1/231, r + s should not exceed 31.
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Reports.

By default, each test prints a report, on standard output, giving the name of the test, the
name of the tested generator, the test parameters, the values of the statistics, the significance
level of those statistics and the CPU time used by the test. This report may also contain
information specific to a given test.

It is possible to print more or less detailed statistical reports by setting one or more of
the boolean flags defined in module swrite. One may wish to see, for example, the value of
the test statistic Y for each of the N replications, the values of the counters, the groupings
of the classes, their expected and observed numbers for the chi-square test, etc. For some
of the tests, printing the counters would generate huge reports and is not practically useful.
For other tests (for example those based on a chi-square test), seeing the counters and the
classes may be enlightening as to why a given generator fails a test. It is even possible to
have no output at all from any of the s modules of TestU01 by setting all the boolean flags
in module swrite to FALSE.

The test functions automatically print the state of the generator at the beginning of an
experiment and at the end of each test. If more than one test are called in a program, the
initial state of the generator at the beginning of a test will be the final state of the generator
at the end of the preceding test. This permits one to keep track of which segment of the
stream of random numbers has been used by each test.

A more flexible way of examining detailed information about what has happened in the
tests, to have a closer look at specific details or perhaps for post-processing the results of
the tests, is via the ..._Res structures. These data structures are specific to each type of
test and are described explicitly in the detailed version of this guide (see also module sres).
Each function implementing a test has a parameter ..._Res * pointing to a structure that
keeps the results.

Perhaps in the majority of situations, the automatic printout made by the testing function
suffices and there is no need to examine the ..._Res structure(s) after the test(s). In this
case, it suffices to pass a NULL pointer for the ..._Res * parameter. The structure will then
be created internally and destroyed automatically after the results are printed.

Scatter plots.

There is a module scatter that permits one to plot points produced by a generator in
the t-dimensional hypercube [0, 1)t. A rectangular box is defined in this hypercube, and the
points lying in this box are projected on a selected two-dimensional subspace and placed on
a 2-dimensional scatter plot. The plot is put in a file ready to be processed by LATEX or
Gnuplot.
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An example: The birthday spacings tests applied to an LCG.

Figure 3.1 shows how to apply a test to a generator. The call to ulcg_CreateLCG creates
and initializes the generator gen to the LCG with modulus m = 2147483647, multiplier a
= 397204094, additive constant c = 0, and initial state x0 = 12345. This LCG is used
in the SAS statistical software [149]. Then the birthday spacings test is applied twice to
this generator, with N = 1, r = 0, in t = 2 dimensions. The sample sizes are n = 103

and n = 104, and the number d of divisions along each coordinate is chosen so that the
expected number of collisions λ = n3/(4dt) is 2.5 in the first case and 0.25 in the second
case (the values of d are 104 and 106, respectively). Under H0, the number of collisions is
approximately a Poisson random variable with mean λ.

#include "unif01.h"
#include "ulcg.h"
#include "smarsa.h"
#include <stddef.h>

int main (void)
{

unif01_Gen *gen;
gen = ulcg_CreateLCG (2147483647, 397204094, 0, 12345);
smarsa_BirthdaySpacings (gen, NULL, 1, 1000, 0, 10000, 2, 1);
smarsa_BirthdaySpacings (gen, NULL, 1, 10000, 0, 1000000, 2, 1);
ulcg_DeleteGen (gen);
return 0;

}

Figure 3.1: Applying two birthday spacings tests to a LCG.

The results are in Figure 3.2. These results are printed to the standard output, which
may be redirected to a file if desired. At sample size n = 103, there are 6 collisions and
the p-value is 0.04, which is not extreme enough to reject H0. At sample size n = 104,
there are 44 collisions and the p-value is close to 10−81 (i.e., if Y is Poisson with mean 0.25,
P [Y ≥ 44] < 10−81). The generator fails miserably in this case, with a sample size as small
as ten thousands. This test took approximately 0.02 second to run.
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***********************************************************
HOST =

ulcg_CreateLCG: m = 2147483647, a = 397204094, c = 0, s = 12345

smarsa_BirthdaySpacings test:
-----------------------------------------------

N = 1, n = 1000, r = 0, d = 10000, t = 2, p = 1

Number of cells = d^t = 100000000
Lambda = Poisson mean = 2.5000

----------------------------------------------------
Total expected number = N*Lambda : 2.50
Total observed number : 6
Significance level of test : 0.04

-----------------------------------------------
CPU time used : 00:00:00.00

Generator state:
s = 1858647048

***********************************************************
HOST =

ulcg_CreateLCG: m = 2147483647, a = 397204094, c = 0, s = 12345

smarsa_BirthdaySpacings test:
-----------------------------------------------

N = 1, n = 10000, r = 0, d = 1000000, t = 2, p = 1

Number of cells = d^t = 1000000000000
Lambda = Poisson mean = 0.2500

----------------------------------------------------
Total expected number = N*Lambda : 0.25
Total observed number : 44
Significance level of test : 9.5e-82 *****

-----------------------------------------------
CPU time used : 00:00:00.00

Generator state:
s = 731506484

Figure 3.2: Results of the two birthday spacings tests.
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swrite

This module contains some functions used in writing statistical test results, inside the
implementation of other modules.

Each testing function in the s modules normally writes a report (on standard output,
by default) that contains the description of the generator being tested, the name of the
experiment, the name of the test and its parameters, the values and significance levels
of statistics, and the CPU time used by each test. This report may contain additional
information specific to a given test. More detailed results in the printouts can be obtained
by setting the boolean variables below to TRUE before calling the test. If all boolean flags
below are set to FALSE, then no output will be printed.

#include "gdef.h"
#include "chrono.h"
#include "unif01.h"
#include "sres.h"

Environment variables

extern boolean swrite_Basic; /* Prints basic results */
extern boolean swrite_Parameters; /* Prints details on parameters */
extern boolean swrite_Collectors; /* Prints statistical collectors */
extern boolean swrite_Classes; /* Prints classes for ChiSquare */
extern boolean swrite_Counters; /* Prints counters */

These environment variables (or switches) are used to control the level of detail in the output
printed by the tests. By default, all are set to FALSE, except for swrite_Basic which is set to
TRUE. When swrite_Basic is TRUE, the test results are printed with a standard level of detail.
If it is FALSE, then nothing from the u or s modules is printed.

The other switches permit one to obtain more detailed information than usual, in a selective
way. The details are printed when the corresponding switch is set to TRUE. This could be useful,
for example, to examine more closely the kind of defect exhibited by a random number generator
that fails a test.

The switch swrite_Parameters controls the printing of internal parameters that are specific
to each test. The switch swrite_Collectors controls the printing of the statistical collectors
holding the N values of the main statistics Y of the test. The switch swrite_Classes controls
the printing of details concerning the regroupings into classes (or categories), with the expected
numbers of observations in each class, in the situations where such regrouping is performed in
order to apply a chi-square test (see function gofs_MergeClasses in module gofs of library
ProbDist). The switch swrite_Counters controls the printing of the different counters that
hold the numbers of observations.

extern boolean swrite_Host;

If this variable is TRUE, the name of the machine on which the tests are run is printed before
each test; otherwise it is not printed.
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sres

This module defines common structures used to keep the results of tests in the s modules.
They are described in the detailed version of this guide.

The first argument of each testing function is the random number generator to be tested.
It must be created by calling the appropriate function in one of the module u, and deleted
when no longer needed. The second argument of each testing function is a structure s..._Res
that can keep the test results (intermediate and final). This is useful if one wishes to do
something else with the results or the information generated during a test. If one does not
want to post-process or use the results after a test, it suffices to set the ..._Res argument to
the NULL pointer. Then, the structure is created and deleted automatically inside the testing
function.
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smultin

Testing the uniformity and independence of a RNG amounts to testing that t-dimensional
vectors (ui, . . . , ui+t−1) of successive output values of the RNG behave like random points
uniformly distributed over the unit hypercube [0, 1]t, for all t. A natural approach for testing
this is to generate such vectors and measure (in some way) the uniformity of their distribution
in the unit hypercube.

A class of tests based on the multinomial distribution.

One simple way of measuring this uniformity is as follows. For some integer d, partition
the interval [0, 1) into d equal segments. This determines a partition of [0, 1)t into k = dt

small hypercubes (or cubic cells) of equal sizes. Then, generate n random points in the unit
hypercube, using nt output values from the generator, and let Xj be the number of points
falling into cell j, for 0 ≤ j ≤ k−1. UnderH0, the vector (X0, . . . , Xk−1) has the multinomial
distribution with parameters (n, 1/k, . . . , 1/k). The next step is to measure how well the
observed vector (X0, . . . , Xk−1) “agrees” with this multinomial distribution. For example, if
n � k, the Xj’s should not be too far from their expected values E[Xj] = λ = n/k. The
most popular test statistic in this context is Pearson’s chi-square [66, 70, 142]:

X2 =
k−1∑
j=0

(Xj − λ)2

λ
= −n +

1

λ

k−1∑
j=0

X2
j , (3.1)

Its distribution under H0 is approximately chi-square with k − 1 degrees of freedom, if λ is
large enough. Other test statistics can be used as well, and some of them turn out to be
better than the chi-square for detecting deficiencies in typical RNGs.

The present module implements several such tests for the multinomial distribution, and
for a variant of it where the points are formed by overlapping vectors. These tests are
described and studied by L’Ecuyer, Simard, and Wegenkittl [96]. The test statistic has the
general form

Y =
k−1∑
j=0

fn,k(Xj) (3.2)

where fn,k is a real-valued function which may depend on n and k. A subclass is the power
divergence statistic

Dδ =
k−1∑
j=0

2

δ(1 + δ)
Xj

[
(Xj/λ)δ − 1

]
, (3.3)

studied in [142], where δ > −1 is a real-valued parameter and δ = 0 means the limit as
δ → 0. One has D1 = X2 as a special case.

Other choices of fn,k are given in Table 3.1. In each case, Y is a measure of clustering: It
decreases when the points are more evenly distributed between the cells. The loglikelihood
statistic G2 is also a special case of Dδ for δ → 0 [142], and it is related to H via the relation
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H = log2(k)−G2/(2n ln 2). The statistic Nb counts the number of cells that contain exactly
b points (for b ≥ 0), Wb is the number of cells that contain at least b points (for b ≥ 1), and
C is the number of collisions (i.e., the number of times a point falls in a cell that already
has one or more points in it). These statistics are related by N0 = k − W1 = k − n + C,
Wb = Nb + · · ·+ Nn, and C = W2 + · · ·+ Wn.

Table 3.1: Some choices of fn,k and the corresponding statistics Y .

Y fn,k(x) name

Dδ 2x[(x/λ)δ − 1]/(δ(1 + δ)) power divergence

X2 (x− λ)2/λ Pearson

G2 2x ln(x/λ) loglikelihood

−H (x/n) log2(x/n) negative entropy

Nb I[x = b] number of cells with exactly b points

Wb I[x ≥ b] number of cells with at least b points

N0 I[x = 0] number of empty cells

C (x− 1) I[x > 1] number of collisions

How to generate the cell numbers.

The standard way of generating the cell numbers is as described earlier, by generating one
fresh uniform for each coordinate of each point. That is, nt random numbers u0, . . . , unt−1

are generated and the n points are (uti, . . . , uti+t−1), for i = 0, . . . , n − 1. This is the non-
overlapping serial approach used in the classical serial test [66]. It is the method used
by default by the function smultin_Multinomial. Here, the points are independent and
(X0, . . . , Xk−1) has the multinomial distribution as mentioned earlier.

Another way of producing the cell numbers is as follows: Generate nt random num-
bers u0, . . . , unt−1. For i = 0, . . . , n − 1, let vti = (uti, . . . , uti+t−1), and find which of the
t! permutations of t objects would reorder the coordinates of vti in increasing order. Let
k = t! number the t! possible permutations from 0 to k − 1, and let Xj be the number of
vectors vti that are reordered by permutation j, for j = 0, . . . , k− 1. Here, since the permu-
tations are independent, (X0, . . . , Xk−1) has the multinomial distribution with parameters
(n, 1/k, . . . , 1/k).

Yet another method is to examine which coordinate in each vti has the largest value, and
let Xj be the number of vectors vti whose largest coordinate is the jth. In this case, k = t
and (X0, . . . , Xk−1) is again multinomially distributed with parameters (n, 1/k, . . . , 1/k).

To change the method for generating the cells numbers in smultin_Multinomial, it
suffices to set the environment variable smultin_GenerCell to the appropriate function
(smultin_GenerCellSerial, smultin_GenerCellPermut, etc.) or to a user-defined func-
tion having the same types of parameters and that generates cell numbers uniformly and
independently.

97



It is also possible and often advantageous to generate cell numbers that are dependent.
This is what happens in the overlapping serial approach, where only n uniforms u0, . . . , un−1

are generated; they are placed in a circle and each one starts a new vector. The n points
are thus defined as v0 = (u0, . . . , ut−1), v1 = (u1, . . . , ut), . . . , vn−t+1 = (un−t+1, . . . , un),
vn−t+2 = (un−t+2, . . . , un, u0), . . . , vn−1 = (un−1, un, u0, . . . , ut−3), vn = (un, u0, . . . , ut−2).
These points are dependent, because their coordinates overlap, so (X0, . . . , Xk−1) is no longer
multinomially distributed in this case. The function smultin_MultinomialOver uses this
approach.

Another set of methods generate the cell numbers from a long string of “random”
bits, which are produced s bits at a time by the RNG. Let k = 2L be the num-
ber of cells, for some integer L. Each cell number is generated by taking L succes-
sive bits from the string, either with or without overlap. The non-overlapping version
requires nL bits (dnL/se calls to the generator) whereas the overlapping one requires
n bits (dn/se calls). The overlapping version operates similarly as the overlapping se-
rial approach described earlier, except that the uniforms uj are replaced by bits. The
functions smultin_MultinomialBits and smultin_MultinomialBitsOver implement these
tests. (See also the tests sentrop_EntropyDisc and sentrop_EntropyDiscOver.)

Distribution of Y for the non-overlapping case.

We now examine the distribution of the different statistics Y in Table 3.1, under H0,
assuming that (X0, . . . , Xk−1) has the multinomial distribution. Exact expressions for E[Y ]
and Var[Y ] for this situation are given in Eqs. (2.1) and (2.2) of [96]. In fact, one has
E[Y ] = kµ where µ = E[fn,k(Xj)]. These expressions for the mean and variance are cheap
to compute when λ = n/k is small but become very expensive to compute when n and λ are
large. For the case where λ � 1, approximations with o(1/n) error are provided in [142],
page 65.

The following propositions, taken from [96], provide approximations for the distribution
of Y under various conditions. Define σ2

N = Var[Y ], σ2
C = Var[Y ]/(2(k − 1)),

Y (N) =
Y − kµ

σN

,

and

Y (C) =
Y − kµ + (k − 1)σC

σC

.

Observe that Y (N) has mean 0 and variance 1 (the same as a standard normal) and that
Y (C) has mean k−1 and variance 2(k−1) (the same as the chi-square random variable with
k − 1 degrees of freedom). Let ⇒ denote convergence in distribution, N(0, 1) the standard
normal distribution, and χ2(k−1) the chi-square distribution with k−1 degrees of freedom.

Proposition 1 For δ > −1, under H0.

(i) [Dense case] If k is fixed and n →∞, D
(C)
δ ⇒ χ2(k − 1).
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(ii) [Sparse case] If k → ∞, n → ∞, and n/k → λ0 where 0 < λ0 < ∞, then D
(N)
δ ⇒

N(0, 1).

The counting variables Nb, Wb, and C do not obey the preceding proposition. For example
if k is fixed and n →∞, eventually Nb becomes 0 and Wb becomes equal to k. If both k and
n are large, then each Xj is approximately Poisson with mean λ, so P [Xj = b] ≈ e−λλb/b!
for b ≥ 0. If k is large and P [Xj = b] is small, Nb is thus approximately Poisson with mean

E[Nb] =
nbe−λ

kb−1b!
. (3.4)

for b ≥ 0. The following proposition is also taken from [96].

Proposition 2 Under H0, suppose k → ∞ and n → ∞, and let λ∞, γ0, and λ0 denote
positive constants.

(i) [Very sparse case] If b ≥ 2 and nb/(kb−1b!) → λ∞, then Wb ⇒ Nb ⇒ Poisson(λ∞).
For b = 2, one also has C ⇒ N2.

(ii) For b = 0, if n/k − ln(k) → γ0, then N0 ⇒ Poisson(e−γ0).

(iii) [Sparse case] If k → ∞ and n/k → λ0 > 0, for Y = Nb, Wb, or C, one has
Y (N) ⇒ N(0, 1).

The exact distributions of C and N0 under H0 (one has P (C = c) = P (N0 = k − n +
c)), for the multinomial setup, can be found in Knuth’s book (see [66], page 71), where
an algorithm is also given to compute all the non-negligible exact probabilities in time
O(n log n). Computing the exact distribution is very slow when n is large. The probability
of having exactly c collisions is given by

P [C = c] =
k(k − 1) . . . (k − n + c + 1)

kn

{
n

n− c

}
(3.5)

where the
{

n
k

}
are the Stirling numbers of the second kind [65]. The expected number of

collisions is

µc
def
= E[C] = k

[
n
k
− 1 +

(
1− 1

k

)n] ≈ n2

2k
.

The current implementation of the test based on C uses the following: If n ≤ 105, the
exact distribution is used, else if n/k ≤ 1, C is approximated by the Poisson distribution
with mean µc, else it is approximated by a normal distribution with the exact mean and
standard deviation. For two-level tests, the Poisson approximation for the total number of
collisions is used.
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Distribution of Y for the overlapping serial approach.

Let X
(o)
t,j be the number of overlapping vectors vi, i = 0, . . . , n − 1, falling into cell j.

The distributions of the statistics Y are more difficult to analyze in this case, because of the
more complicated dependence relationship between the X

(o)
t,j .

For δ > −1, let

Dδ,(t) =
k−1∑
j=0

2

δ(1 + δ)
X

(o)
t,j

[
(X

(o)
t,j /λ)δ − 1

]
, (3.6)

the power divergence statistic for the t-dimensional overlapping vectors, and define

D̃δ,(t) = Dδ,(t) −Dδ,(t−1). (3.7)

The following is taken from [96] (The case δ = 1 was proved long ago by Good [46]):

Proposition 3 [Dense case] Under H0, if k is fixed and n →∞, D̃δ,(t) ⇒ χ2(dt − dt−1).

For the sparse case, where k, n → ∞ and n/k → λ0 where 0 < λ0 < ∞, simulation
experiments support the conjecture that

D̃2
1,(t) − (k − k′)√

2(k − k′)
⇒ N(0, 1) (3.8)

but this has not been proved.

Marsaglia and Zaman [118] speculate that N0 is approximately normal with mean ke−λ

and variance ke−λ(1 − 3e−λ). This approximation is reasonably accurate for 2 ≤ λ ≤ 5
(roughly), but no longer makes sense when λ is too large or close to zero. Marsaglia [103]
calls the test based on N0 with t = 2 the overlapping pairs sparse occupancy (OPSO) test
(see smarsa_CollisionOver and smarsa_Opso).

Proposition 2 (i) and (ii) probably holds in the overlapping case as well, but we do not
have a formal proof. Simulation experiments indicate that the Poisson approximation for C
is very accurate for (say) λ < 1/32, and already quite good for λ ≤ 1, when n is large.

Calling the tests.

Four functions are available here to launch a test: smultin_Multinomial for the case
where the cell numbers are independent of each other (so we have the multinomial distribu-
tion) and smultin_MultinomialOver for the case where the cell numbers are generated by
overlapping t-tuples. In each of these two procedures, the type of approximation that is used
for the distributions of the power divergence statistics is determined by the boolean param-
eter Sparse: The normal approximation is used when it is true, and the chi-square approx-
imation otherwise. The two analog functions for bit tests are smultin_MultinomialBits

and smultin_MultinomialBitsOver.
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#include "gdef.h"
#include "fmass.h"
#include "statcoll.h"
#include "gofw.h"
#include "unif01.h"

#define smultin_MAX_DELTA 8

Maximal number of distinct values of δ for which the statistic Dδ can be computed in a single
test (with δ = −1 representing the family of collision-type tests).

#define smultin_MAXB 10

Maximal value of b for which the statistic Wb can be computed (see Table 3.1).

Environment variables

The parameters in smultin_Envir are environment variables that should be fixed once
for all and will not normally be changed.

typedef struct {

double Maxk;

Maximal value of k = dt, the number of cells. The default value is either 263 if 64-bit integers
are available, or else 253, the largest number of cells that can be enumerated by double’s
without loss of precision.

} smultin_Envir;

extern smultin_Envir smultin_env;

This is the environment variable used to keep the values of the fields described above in
smultin_Envir.

Functions to generate the cell numbers

#ifdef USE_LONGLONG
typedef ulonglong smultin_CellType;

#else
typedef double smultin_CellType;

#endif

Type used to enumerate cell numbers, either 64-bit integers if they are available or else double’s.
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typedef smultin_CellType (*smultin_GenerCellType) (unif01_Gen *, int, int,
long);

Type of function used to generate a cell number. It returns the cell number.

smultin_CellType smultin_GenerCellSerial (unif01_Gen *gen, int r, int t,
long d);

Generates and returns a cell number in {0, . . . , k − 1} for the multinomial test, with k = dt.
The function generates t integers y0, . . . , yt−1 in {0, . . . , d−1}, using the most significant bits of
t successive uniforms (after throwing away their leading r bits). The cell number c = y0d

t−1 +
· · ·+ yt−2d + yt−1 is returned.

smultin_CellType smultin_GenerCellSerial2 (unif01_Gen *gen, int r, int t,
long d);

Similar to smultin_GenerCellSerial, except that the cell number is c = yt−1d
t−1+· · ·+y1d+y0.

This is equivalent to using smultin_GenerCellSerial, because it only changes the numbering
of the cells and the power divergence test statistics do not depend on the numbering.

smultin_CellType smultin_GenerCellPermut (unif01_Gen *gen, int r, int t,
long junk);

Similar to smultin_GenerCellSerial, except that there are t! cells, corresponding to the t!
permutations of t real numbers, The function generates t uniforms and returns the number of
the permutation that corresponds to their ordering.

smultin_CellType smultin_GenerCellMax (unif01_Gen *gen, int r, int t,
long junk);

Similar to smultin_GenerCellSerial, except that k = t and the cell number is the number of
the largest coordinate in vti.

Test parameters having default values

The parameters in the following global structure smultin_Param often remain the same
in a given experiment. They can practically be viewed as environment variables. To change
their default values, one should create a smultin_Param structure and pass it as a pointer
to the tests. When a NULL pointer is passed as argument to a test, the default values are
used instead.

typedef struct {

int NbDelta;
double ValDelta [smultin_MAX_DELTA];

The number of values of δ, and the list of values of δ, for which the multinomial tests are
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applied (simultaneously) when calling a test. If NbDelta = m, then the tests are applied
for the m values δ0, . . . , δm−1 which must be given in array ValDelta[0..m-1]. The value
δ = −1 corresponds to the collision test and the other values of δ correspond to power
divergence tests. The default values are m = 2, δ0 = −1, δ1 = 1.

smultin_GenerCellType GenerCell;

This function is used to generate the cell numbers in the tests. It is one of the function
smultin_GenerCell described above. The default value is smultin_GenerCellSerial.

int bmax;

In the non-overlapping case for δ = −1, in addition to applying the collision test, the statistic
Wb and its p-value are computed for b = 0, . . . ,bmax. For b = 0, the test is actually based on
N0, the number of empty cells. If the value is negative, none of these statistics is computed.
The default value is bmax = -1.

} smultin_Param;

smultin_Param * smultin_CreateParam (int NbDelta, double ValDelta[],
smultin_GenerCellType GenerCell, int bmax);

Function creating and returning a structure that will hold the parameters described above. The
parameters have the same meaning as in the structure smultin_Param.

void smultin_DeleteParam (smultin_Param *par);

Procedure freeing the memory allocated by smultin_CreateParam.

The tests

void smultin_Multinomial (unif01_Gen *gen, smultin_Param *par,
smultin_Res *res, long N, long n, int r, long d, int t, boolean Sparse);

This function applies the power divergence test, based on statistic Dδ, for each value of δ spec-
ified in the array par->ValDelta[0..NbDelta-1] (where δ = −1 corresponds to the collision
test, based on C). The theoretical distribution of Dδ (with a two-moment correction) is approxi-
mated by a normal if Sparse = TRUE, and by a chi-square with k−1 degrees of freedom if Sparse
= FALSE. This function also applies tests based on Wb for b = 0, 2, . . . ,par->bmax. All these
tests are applied simultaneously, using the same cell countings. The cell numbers are gener-
ated by the function in variable par->GenerCell. By default, it is smultin_GenerCellSerial.
Both par or res can be set to the NULL pointer, in which case these structures are created and
deleted internally. It is recommended to have n/k > 8 if Sparse = FALSE, except for δ = 1. If
Sparse = TRUE, n and k should both be very large. Restriction: k = dt ≤ smultin_Maxk.

void smultin_MultinomialOver (unif01_Gen *gen, smultin_Param *par,
smultin_Res *res, long N, long n, int r, long d, int t, boolean Sparse);

Similar to smultin_Multinomial, but where the n cell numbers are generated using the overlap-
ping serial approach, as described earlier in the paragraph “How to generate the cell numbers”
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and used in smarsa_SerialOver.

void smultin_MultinomialBits (unif01_Gen *gen, smultin_Param *par,
smultin_Res *res, long N, long n, int r, int s, int L, boolean Sparse);

Similar to smultin_Multinomial, except that the cells are generated from a string of bits
obtained by taking s bits from each output value. There are k = 2L cells and each cell number
is determined by taking L successive bits from the string. In the case where L = ts for some
integer t, this test is equivalent to smultin_Multinomial with d = 2s and t = L/s. The present
function is to cover the other cases (e.g., if L < s). Restrictions: L mod s = 0 when L > s, and
s mod L = 0 when s > L.

void smultin_MultinomialBitsOver (unif01_Gen *gen, smultin_Param *par,
smultin_Res *res, long N, long n, int r, int s, int L, boolean Sparse);

Similar to smultin_MultinomialBits, except that the n cell numbers are generated using the
overlapping approach at the bit level. The n bits are placed in a circle and each block of L
successive bits determines a cell number. L and s do not have to divide each other.
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sentrop

This module implements tests based on discrete and continuous empirical entropies, de-
fined and studied by Dudewicz and van der Meulen [24, 25] and L’Ecuyer, Compagner, and
Cordeau [86]. The tests of [24, 25] are actually superseded by the tests with δ = 0 in module
smultin, where a much better approximation is used for the distribution of the test statistic.
The parameter res is usually set to the NULL pointer. However, if one wants to examine or
post-process the results after a test, then one must explicitly create a res structure. See the
detailed version of this guide for the definition of the structures and the relevant instructions.

#include "statcoll.h"
#include "gofw.h"
#include "unif01.h"
#include "sres.h"

The tests

void sentrop_EntropyDisc (unif01_Gen *gen, sentrop_Res *res,
long N, long n, int r, int s, int L);

Applies the entropy-based test proposed in [86]. It builds n blocks of L bits by taking s-bit
strings (the s most significant bits after dropping the first r) from each of NL/s successive
output values from the generator, and concatenating these strings. There are k = 2L possible
L-bit blocks, which can be numbered from 0 to k − 1. Let Xi be the observed frequency of
occurrence of the ith possibility, for i = 0, . . . , k− 1. The test is based on the empirical entropy

T = −
k−1∑
i=0

Xi log2 Xi,

whose distribution is approximated by the normal if n/2L ≤ 8 (the sparse case) and by a chi-
square distribution if n/2L > 8 (the dense case). This test is equivalent to smultin_Multino-
mialBits with the power divergence test statistic, using δ = 0 only. Restrictions: Either L
divides s or s divides L.

void sentrop_EntropyDiscOver (unif01_Gen *gen, sentrop_Res *res,
long N, long n, int r, int s, int L);

Applies an entropy-based test described in [86], similar to sentrop_EntropyDisc, but with
overlap of the blocks. It constructs a sequence of n bits, by taking s bits from each of n/s
output values, puts these n bits on a circle, and examines all n blocks of L successive bits on
this circle. The test computes the empirical entropy, defined by

T = −
k−1∑
i=0

Xi log2 Xi,

where the Xi are the observed frequencies of the L-bit strings. This test is equivalent to
smultin_MultinomialBitsOver with the power divergence test statistic, using δ = 0 only.
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For N > 1, the function also tests the empirical correlation between pairs of successive values of
T , as well as the average of these values. This average is compared with the exact expectation
in the cases where it is known. Restrictions: r ≤ 31, s ≤ 31, n ≤ 31, L ≤ n/2, n mod s = 0,
and N � n.

void sentrop_EntropyDiscOver2 (unif01_Gen *gen, sentrop_Res *res,
long N, long n, int r, int s, int L);

A version of sentrop_EntropyDiscOver that accepts n > 31. For n > 30, it tests only the
correlation between successive values of T . Restrictions: L ≤ 15, r ≤ 31, s ≤ 31, L + s ≤ 31,
n mod s = 0, dL/ses ≤ 31, and N � n.

void sentrop_EntropyDM (unif01_Gen *gen, sres_Basic *res,
long N, long n, int r, long m);

Applies the entropy test described by Dudewicz and van der Meulen [24, 25]. It uses n successive
output values from the generator and computes the empirical entropy Hm,n defined in [24, 25],
whose theoretical distribution is approximated by a normal distribution.

void sentrop_EntropyDMCirc (unif01_Gen *gen, sres_Basic *res,
long N, long n, int r, long m);

Similar to sentrop_EntropyDM, except that a circular definition of the Yi’s (defined in [24, 25])
is used. This function defines Yi = Yn+i − 1 for i < 1, and Yi = Yi−n + 1 for i > n.
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snpair

This module implements tests based on the distances between the closest points in a
sample of n uniformly distributed points in the unit torus in t dimensions. These tests are
studied by L’Ecuyer, Cordeau, and Simard [87].

Distances between points are measured using the Lp norm ‖ · ‖o
p in the unit torus [0, 1)t,

as defined in [87]. The unit torus is obtained by identifying (pairwise) the opposite sides of
the unit hypercube, so that points that are face to face on opposite sides are “close” to each
other. Each point is generated using t calls to the generator, for a total of nt calls to get the
n points X1, . . . , Xn.

Let Dn,i,j = ‖Xj−Xi‖p be the distance between Xi and Xj. Put λ(n) = n(n−1)Vt(1)/2,
where Vt(r) is the volume of the ball {x ∈ Rt | ‖x‖p ≤ r}. For each τ ≥ 0, let Yn(τ) be the
number of distinct pairs of points (Xi, Xj), with i < j, such that Dn,i,j ≤ (τ/λ(n))1/t. The
following is proved in [87]:

Proposition 4 Under H0, for any fixed τ1 > 0 and n → ∞, the truncated process
{Yn(τ), 0 ≤ τ ≤ τ1} converges weakly to a Poisson process with unit rate. Moreover, for
τ ≤ λ(n)/2t, one has E[Yn(τ)] = τ and Var[Yn(τ)] = τ − 2τ 2/(n(n− 1)).

Let Tn,i = inf{τ ≥ 0 | Yn(τ) ≥ i}, i = 1, 2, 3, . . ., be the jump times of Yn, with Tn,0 = 0,
and let W ∗

n,i = 1 − exp[−(Tn,i − Tn,i−1)] be the transformed spacings between these jump
times. Proposition 4 implies that for any fixed integer m > 0, for large enough n, the random
variables W ∗

n,1, . . . ,W
∗
n,m are approximately i.i.d. U(0, 1). The function snpair_ClosePairs

applies the m-nearest-pairs (m-NP) test, which simply compares the empirical distribution
of these random variables with the uniform distribution, using the Anderson-Darling test
statistic (see module gofs). Why Anderson-Darling? Because typically, when a generator
has too much structure, the jump times of Yn tend to cluster, so there tends to be several
W ∗

n,i’s near zero, and the Anderson-Darling test is particularly sensitive to detect that type
of behavior.

For a two-level test, when N > 1, the standard approach is to apply a goodness-of-fit
test to the N values of the Anderson-Darling statistic. A second approach is to pool the
N batches of m observations W ∗

n,i in a single sample of size Nm and apply the Anderson-
Darling test to it. These two possibilities are referred to by the acronyms m-NP and m-NP1
respectively.

A third one is to superpose the N copies of the process Yn, to obtain a process Y defined
as the sum of the n copies of Yn. Fix a constant τ1 > 0 and let J be the number of jumps
of Y in the interval [0, τ1]. Set T0 = 0 and let T1, . . . , TJ be the sorted times of these jumps.
Under H0, J is approximately Poisson with mean Nτ1, and conditionally on J , the jump
times Tj are distributed as J independent uniforms over [0, τ1] sorted in increasing order. We
can test this uniformity with an AD test on the J observations and this is called the m-NP2
test. It is also worthwhile to compare the realization of J with the Poisson distribution and
this is the NJumps test.
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In yet another variant of the uniformity test conditional on J , we apply a “spacings”
transformation to the uniforms before applying the AD test (this is called the m-NP2S test).
This latter test is very powerful but it also turns out to be very sensitive to the number
of bits of “precision” in the output of the generator. For example, in dimension t = 2, for
N = 20, n = 106 and m = 20, all generators returning less than 32 bits of precision will fail
this test.

We can finally apply a “spacings” transformation to the N closest distances W ∗
n,1 and to

the mN nearest pairs W ∗
n,i before applying the AD test, and these are called the NPS and

the m-NP1S tests, respectively.

The function snpair_ClosePairs implements the tests that we just described. The func-
tion snpair_ClosePairsBitMatch implements a similar type of test, but based on a different
notion of distance: The distance between two points is measured by counting how many of the
most significant bits of their coordinates are the same. The function snpair_BickelBreiman

implements a multivariate goodness-of-fit test proposed by Bickel and Breiman [5], also based
on distances between nearest points.

#include "gdef.h"
#include "chrono.h"
#include "statcoll.h"
#include "unif01.h"

Constants

#define snpair_MAXM 512

Maximal value of m for snpair_ClosePairs.

#define snpair_MAXREC 12

Maximal number of dimensional recursions.

The tests

The parameter res is usually set to the NULL pointer. However, if one wants to examine
or post-process the results after a test, then one must explicitly create a res structure.
See the detailed version of this guide for the definition of the structures and the relevant
instructions.

extern boolean snpair_mNP2S_Flag;

If this flag is set TRUE, the mNP2S statistic in snpair_ClosePairs will be printed as well as its
p-value, otherwise not. The default value is TRUE. This statistic requires many bits of resolution
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and for large enough values of N,n and m in 2 dimensions, all generators with less than 32 bits
of resolution will fail the mNP2S test. For example, for N = 20, n = 106, m = 20, t = 2, all
generators returning less than 32 bits of resolution will fail the test.

void snpair_ClosePairs (unif01_Gen *gen, snpair_Res *res,
long N, long n, int r, int t, int p, int m);

Applies the close-pairs tests NP, m-NP, m-NP1, and m-NP2, and m-NP2S by generating n
points in the t-dimensional unit torus and computing the m nearest distinct pairs of points,
where the distances between the points are measured using the Lp norm if p ≥ 1, and the L∞
norm if p = 0. Recommendation: n ≥ 4m2

√
N for t ≤ 8. Restrictions: m ≤ snpair_MAXM.

void snpair_ClosePairsBitMatch (unif01_Gen *gen, snpair_Res *res,
long N, long n, int r, int t);

Generates n points in the unit hypercube in t dimensions as in snpair_ClosePairs and com-
putes the closest pair, but using a different definition of distance. The distance between two
points Xi and Xj is 2−bi,j , where bi,j is the maximal value of b such that the first b bits in the
binary expansion of each coordinate are the same for both Xi and Xj . This means that if the
unit hypercube is partitioned into 2tb cubic boxes by dividing each axis into 2b equal parts, the
two points are in the same box for b ≤ bi,j , but they are in different boxes for b > bi,j . Let
D = min1≤i<j≤n 2−bi,j be the minimal distance between any two points. For any two points,
P [bi,j ≥ b] = 2−tb. One has D ≤ 2−b if and only if − log2 D = max1≤i<j≤n bi,j ≥ b, if and only if
at least b bits agree for at least one pair, and the probability that this happens is approximately

P [D ≤ 2−b] ≈ 1−
(
1− 2−tb

)n(n−1)/2 def= qb.

If exactly b = − log2 D bits agree, the left and right p-values are pL = qb and pR = 1 − pb−1,
respectively. If N > 1, the two-level test computes the minimum of the N copies of D and uses
it as a test statistic. The p-value is obtained from

P [min{D1, D2, . . . , DN} ≤ 2−b] ≈ 1−
(
1− 2−tb

)Nn(n−1)/2
.

void snpair_BickelBreiman (unif01_Gen *gen, snpair_Res *res, long N,
long n, int r, int t, int p, boolean Torus);

Applies a test based on the statistic proposed by Bickel and Breiman [5] to test the fit of a set of
points to a multidimensional density. The test is described in [87]. As for snpair_ClosePairs,
n points are generated in the unit hypercube in t dimensions. If Torus = FALSE, the distances
are computed in the hypercube as usual, whereas if Torus = TRUE, the hypercube is treated as
a torus for computing distances, so that two points near opposite faces of the cube can be close
to each other [87].

For each point i, let Di be the distance to its nearest neighbour, and let Wi = exp(−nVi) where
Vi is the volume of a hypersphere of radius Di. The computed statistic is T =

∑n
i=1(W(i)−i/n)2

where the W(i) are the Wi sorted in increasing order. If N > 1, the empirical distribution of
the N values of T is compared to the theoretical law which is approximated using interpolation
tables obtained by simulation as explained in [87]. Restrictions: {p, t} = {0, 2}, {0, 15} or {2, 2}.

109



sknuth

This module implements the classical statistical tests for RNGs described in Knuth’s book
[64]. (They were actually taken from the 1981 edition, and implemented some years before
the 1998 edition [66] appeared.) Some of these tests are special cases of the multinomial tests
described and implemented in module smultin. In these cases, the functions here simply
call the appropriate functions in smultin. The parameter res is usually set to the NULL

pointer. However, if one wants to examine or post-process the results after a test, then one
must explicitly create a res structure. See the detailed version of this guide for the definition
of the structures and the relevant instructions.

#include "gdef.h"
#include "unif01.h"
#include "sres.h"

The tests

void sknuth_Serial (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, long d, int t);

Applies the serial test of uniformity in t dimensions, using a chi-square, as described by Knuth
[66], p.62. It divides the interval [0, 1) in d equal segments, thus dividing the unit hypercube
[0, 1)t in dt small hypercubes. It generates n points (t-dimensional vectors) in [0, 1)t, using n
non-overlapping vectors of t successive output values from the generator, counts the number of
points falling into each small hypercube, and compares those counts with the expected values
via a chi-square test. This test is a special case of smultin_Multinomial with Sparse = FALSE
(see [96]). It assumes that we are in the dense case, where n > k = dt. Restriction: n/dt ≥
gofs_MinExpected.

void sknuth_SerialSparse (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, long d, int t);

Similar to sknuth_Serial, except that a normal approximation is used for the distribution of
the chi-square statistic. This is valid asymptotically when n/dt is bounded and n → ∞. The
implementation uses a hashing table in order to allow for larger values of dt. This test is a
special case of smultin_Multinomial with Sparse = TRUE (see [96]). It corresponds to the
sparse case of the serial test, where we assume that n is large and n ≤ k = dt. Restrictions:
dt < 253 and dt/n < 231.

void sknuth_Permutation (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, int t);

Applies the permutation test (Knuth [66], page 65). It generates n non-overlapping vectors
of t values, each vector using t successive values obtained from the generator, and deter-
mines to which permutation each vector corresponds (the permutation that would place the
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values in increasing order). The test counts the number of times each permutation has ap-
peared and compares these counts with the expected values (n/t!) via a chi-square test. This
is a special case of smultin_Multinomial with Sparse = FALSE and smultin_GenerCell =
smultin_GenerCellPermut. It corresponds to the dense case, where n, the number of points,
should be larger than t!, the number of cells. Restrictions: n/t! ≥ gofs_MinExpected and
2 ≤ t ≤ 18.

void sknuth_Gap (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, double Alpha, double Beta);

Applies the gap test described by Knuth [59, 60, 66]. Let α = Alpha, β = Beta, and p = β−α.
The test generates n values in [0, 1) and, for s = 0, 1, 2, . . ., counts the number of times that a
sequence of exactly s successive values fall outside the interval [α, β] (this is the number of gaps
of length s between visits to [α, β]). It then applies a chi-square test to compare the expected
and observed number of observations for the different values of s. Restrictions: 0 ≤ α < β ≤ 1.

void sknuth_SimpPoker (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, int d, int k);

Applies the simplified poker test described by Knuth [59, 60, 66]. It generates n groups of k
integers from 0 to d − 1, by making nk calls to the generator, and for each group it computes
the number s of distinct integers in the group. It then applies a chi-square test to compare
the expected and observed number of observations for the different values of s. Restrictions:
d < 128 and k < 128.

void sknuth_CouponCollector (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, int d);

Applies the coupon collector test proposed in [49] and described in [66]. The test generates a
sequence of random integers in {0, . . . , d− 1}, and counts how many must be generated before
each of the d possible values appears at least once. This is repeated n times. The test counts
how many times exactly s integers were needed, for each s, and compares these counts with the
expected values via a chi-square test. Restriction: 1 < d < 62. If d is too large for a given n,
there will be only 1 class for the chi-square and the test will not be done.

void sknuth_Run (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, boolean Up);

Applies the test of increasing or decreasing subsequences (runs up or runs down) [61, 100,
66]. It measures the lengths of subsequences of successive values in [0, 1) that are generated
in increasing (or decreasing) order. If Up = TRUE, it considers runs up, otherwise it considers
runs down. These subsequences are the runs. The test thus generates n random numbers,
counts how many runs of each length there are after merging all run lengths larger or equal to
6, and computes the statistic V defined in [66], page 67, Eq. (10) (the new version of the test
incorporating small O(1/n) corrections is used, as described in the 3rd edition of [66]). For large
n, this V should follow approximately the chi-square distribution with 6 degrees of freedom.
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void sknuth_RunIndep (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, boolean Up);

A simplified version of sknuth_Run, where the increasing or decreasing subsequences are inde-
pendent, as suggested in Exercice 3.3.2–14 of [66], page 77. This test skips one value between
any two successive runs. In this case, a run has length t with probability 1/t!− 1/(t + 1)!. The
function merges all values larger or equal to 6, and applies a chi-square test.

void sknuth_MaxOft (unif01_Gen *gen, sknuth_Res1 *res,
long N, long n, int r, int d, int t);

Applies the maximum-of-t test (Knuth [66], page 70). This test generates n groups of t values in
[0, 1), computes the maximum X for each group, and then compares the empirical distribution
function of these n values of X with the theoretical distribution function of the maximum,
F (x) = xt, via a chi-square test and an Anderson-Darling (AD) test. To apply the chi-square
test, the values of X are partitioned into d categories in a way that the expected number in
each category, under H0, is exactly n/d. For N > 1, the empirical distribution of the p-values
of the AD test is compared with the AD distribution. Restriction: n/d ≥ gofs_MinExpected.

void sknuth_Collision (unif01_Gen *gen, sknuth_Res2 *res,
long N, long n, int r, long d, int t);

Applies the collision test (Knuth [66], pp. 70–71, and [96]). Similar to sknuth_Serial, ex-
cept that the test computes the number of collisions (the number of times a point hits a
cell already occupied) instead of computing the chi-square statistic. This is a special case of
smultin_Multinomial with Sparse = TRUE. This test is meaningfull only in the sparse case,
with n smaller than k. See the documentation in smultin. Restrictions: dt < 253 (assuming
that a double’s mantissa uses 53 bits of precision) and dt/n < 231.

void sknuth_CollisionPermut (unif01_Gen *gen, sknuth_Res2 *res,
long N, long n, int r, int t);

Similar to sknuth_Collisions, except that instead of generating vectors as in sknuth_Serial,
it generates permutations as in sknuth_Permutation. It then computes the number of collisions
between these permutations. This is a special case of smultin_Multinomial with Sparse =
TRUE and smultin_GenerCell = smultin_GenerCellPermut. It corresponds to the sparse case
where n, the number of points, should be much smaller than t!, the number of cells. Restrictions:
2 ≤ t ≤ 18 and t!/n < 231.
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smarsa

Implements the statistical tests suggested by George Marsaglia and his collaborators in
[103] and other places. Some of these tests are special cases of the overlapping versions of
the tests implemented in module smultin and in these cases, the functions here simply call
smultin_MultinomialOver. The parameter res is usually set to the NULL pointer. However,
if one wants to examine or post-process the results after a test, then one must explicitly create
a res structure. See the detailed version of this guide for the definition of the structures and
the relevant instructions.

#include "unif01.h"
#include "sres.h"

The tests

void smarsa_SerialOver (unif01_Gen *gen, sres_Basic *res,
long N, long n, int r, long d, int t);

Implements the overlapping t-tuple test described in [1, 103]. It is similar to sknuth_Serial,
except that the n vectors are generated with overlap, as follows. A sequence of uniforms
u0, . . . , un−1 is generated, and the n points are defined as (u0, . . . , ut−1), (u1, . . . , ut), . . . ,
(un−1, un, u0, . . . , ut−3), (un, u0, . . . , ut−2). This test is a special case of smultin_Multino-
mialOver, with Sparse = FALSE (see also [96]). Restriction: n/dt ≥ gofs_MinExpected.

void smarsa_CollisionOver (unif01_Gen *gen, smarsa_Res *res,
long N, long n, int r, long d, int t);

Similar to the collision test, except that the vectors are generated with overlap, exactly as
in smarsa_SerialOver. This test corresponds to the test overlapping pairs sparse occupancy
(OPSO) test described in [103] and studied by Marsaglia and Zaman [105]. Let λ = (n−t+1)/dt,
called the density. If n (the number of points) and dt (the number of cells) are very large and
have the same order of magnitude, then, under H0, the number of collisions C is a random
variable which is approximately normally distributed with mean µ ≈ dt(λ−1+e−λ) (this follows
from Theorem 2 of [136]), and variance σ2 ≈ dte−λ(1 − 3e−λ), according to the speculations
of [105] (see smultin). However, Rukhin [148] gave a better approximation for the variance as
σ2 ≈ dte−λ(1 − (1 + λ)e−λ) and this is the formula that is used. When n � dt, the number
of collisions should be approximately Poisson with mean µ, whereas if λ is large enough (e.g.,
λ > 6), then the number of empty cells (dt−n+C) should be approximately Poisson with mean
dte−λ. This test is a special case of smultin_MultinomialOver.

void smarsa_Opso (unif01_Gen *gen, smarsa_Res *res,
long N, int r, int p);

Three special cases of smarsa_CollisionOver. Implements the OPSO test with the same
three sets of parameters as in the examples of [103]. The parameters (n, d, t) are (221, 210, 2),
(222, 211, 2), and (223, 211, 2), for p = 1, 2, and 3, respectively.
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Restriction: p ∈ {1, 2, 3}.

void smarsa_CAT (unif01_Gen *gen, sres_Poisson *res,
long N, long n, int r, long d, int t, long S[]);

Applies the CAT test , one of the monkey test proposed by Marsaglia in [118] and analyzed
by Percus and Whitlock in [136]. This test is a variation of the collision test with overlapping
(smarsa_CollisionOver), except that only one cell is observed. For this reason, this test is
typically less powerful than smarsa_CollisionOver unless the target cell happens to be visited
very frequently due to a particular weakness of the generator. This target cell is specified by the
vector S[0..t-1]. For each point, the generator provides t integers y0, . . . , yt−1 in {0, . . . , d−1}
and the target cell is hit whenever (y0, . . . , yt−1) = (S[0],...,S[t-1]). The target cell number
should make an aperiodic pattern, i.e., it should not be possible to write it as ABA where A is
a prefix of the pattern.

The test generates n numbers (giving n−t+1 points with overlapping coordinates) and computes
Y , the number of points that hit the target cell. Under H0, Y is approximately Poisson with
mean λ = (n− t + 1)/dt, and the sum of all values of Y for the N replications is approximately
Poisson with mean Nλ. The test computes this sum and the corresponding p-value, using the
Poisson distribution. Note: The pair (N,n) may be replaced by (1, nN), as this is equivalent.
Normally, λ should be larger than 1, so this corresponds to the dense case, where n > k.

void smarsa_CATBits (unif01_Gen *gen, sres_Poisson *res, long N, long n,
int r, int s, int L, unsigned long Key);

Similar to smarsa_CAT, except that the cell is generated from a string of bits. This test is a
variation of the multinomial test on bits with overlapping (smultin_MultinomialBitsOver),
except that only one cell is observed (for this reason, this test is typically less powerful than
smultin_MultinomialBitsOver). This target cell is specified by Key. Each point is made of
L bits and the target cell is hit whenever the L bits are numerically equal to Key. The test
compares each group of L bits to the key in a sequence of n bits. When the key is not found,
one moves 1 bit forward in the sequence. But when the key is found, one jumps L bits forward.
The bits of Key should make an aperiodic pattern, i.e., it should not be possible to write Key
(in binary form) as ABA where A is a binary prefix of Key.

The test generates n bits and computes Y , the number of points that hit the target cell. Under
H0, Y is approximately Poisson with mean λ = (n − L + 1)/2L, and the sum of all values of
Y for the N replications is approximately Poisson with mean Nλ. The test computes this sum
and the corresponding p-value, using the Poisson distribution. Normally, λ should be larger
than 1, so this corresponds to the dense case, where n > 2L. Restrictions: L ≤ 32, r + s ≤ 32,
and if L > s then L mod s = 0.

void smarsa_BirthdaySpacings (unif01_Gen *gen, sres_Poisson *res,
long N, long n, int r, long d, int t, int p);

Implements the birthday spacings test proposed in [103] and studied further by Knuth [66] and
L’Ecuyer and Simard [93]. This is a variation of the collision test, in which n points are thrown
into k = dt cells in t dimensions as in smultin_Multinomial. The cells are numbered from
0 to k − 1. To generate a point, t integers y0, . . . , yt−1 in {0, . . . , d − 1} are generated from
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t successive uniforms. The parameter p decides in which order these t integers are used to
determine the cell number: The cell number is c = y0d

t−1 + · · · + yt−2d + yt−1 if p = 1 and
c = yt−1d

t−1 + · · · + y1d + y0 if p = 2. This corresponds to using smultin_GenerCellSerial
for p = 1 and smultin_GenerCellSerial2 for p = 2.

The points obtained can be viewed as n birth dates in a year of k days [1, 103]. Let I1 ≤
I2 ≤ · · · ≤ In be the n cell numbers obtained, sorted in increasing order. The test computes
the differences Ij+1 − Ij , for 1 ≤ j < n, and count the number Y of collisions between these
differences. Under H0, Y is approximately Poisson with mean λ = n3/(4k), and the sum of all
values of Y for the N replications (the total number of collisions) is approximately Poisson with
mean Nλ. The test computes this total number of collisions and computes the corresponding p-
value using the Poisson distribution. Recommendation: k should be very large and λ relatively
small. Restrictions: k ≤ smarsa_Maxk, 8Nλ ≤ k1/4 or 4n ≤ k5/12/N1/3, and p ∈ {1, 2}. 1

void smarsa_MatrixRank (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, int s, int L, int k);

Applies the test based on the rank of a random binary matrix , as suggested in [103, 115]. It
fills a L × k matrix with random bits as follows. A sequence of uniforms are generated and s
bits are taken from each. The matrix is filled one row at a time, using dk/se uniforms per row.
The test then computes the rank of the matrix (the number of linearly independent rows). It
thus generates n matrices and counts how many there are of each rank. Finally it compares
this empirical distribution with the theoretical distribution of the rank of a random matrix, via
a chi-square test, after merging classes if neeeded (as usual). The probability that the rank R
of a random matrix is x is given by

P [R = 0] = 2−Lk

P [R = x] = 2x(L+k−x)−Lk
x−1∏
i=0

(1− 2i−L)(1− 2i−k)
1− 2i−x

, 1 ≤ x ≤ min(L, k).

Recommendation: L = k. Restrictions: n/2 > gofs_MinExpected. The difference |L − k|
should be small, otherwise almost all the probability will be lumped in a single class, for the
chi-square.

void smarsa_Savir2 (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, long m, int t);

Applies a modified version of the Savir test, as proposed by Marsaglia [104]. The test generates
a random integer I1 uniformly in {1, . . . ,m}, then a random integer I2 uniformly in {1, . . . , I1},
then a random integer I3 uniformly in {1, . . . , I2}, and so on until It. It thus generates n values
of It and compares their empirical distribution with the theoretical one, via a chi-square test.
The algorithm given in [104] is used to compute the theoretical distribution of It under the null
hypothesis. Restrictions: n/2 > gofs_MinExpected. Recommendation: m ≈ 2t.

1From Richard: Ce test est beaucoup plus sensible pour un très grand nombre de cellules avec n grand.
Pour Nn constant, choisir n aussi grand que possible et N petit. Mais on est limité par la valeur maximale
d’un entier pour numéroter les cases, et aussi par le fait que la densité doit être suffisamment petite pour
que l’approximation de Poisson soit valide.
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void smarsa_GCD (unif01_Gen *gen, smarsa_Res2 *res,
long N, long n, int r, int s);

Applies the tests based on the greatest common divisor (GCD) between two random integers
in [1, 2s] as proposed by Marsaglia [114]. The first test considers the value of the GCD itself
for which the probability that the GCD takes the value j is Pj = 6/(π2j2) (see [66]). A
chi-square test is applied on the values obtained. The second test considers the number of
iterations needed to find the GCD. The theoretical distribution is unknown and the binomial
approximation proposed by Marsaglia has to be corrected by an empirical factor. This second
test is not used for the moment and is left as a future project. Restrictions: n ≥ 30 and
log2 n ≤ 3s/2.
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svaria

This module implements various tests of uniformity based on relatively simple statistics,
as well as a few specific tests proposed in the literature. The parameter res is usually set
to the NULL pointer. However, if one wants to examine or post-process the results after a
test, then one must explicitly create a res structure. See the detailed version of this guide
for the definition of the structures and the relevant instructions.

#include "unif01.h"
#include "sres.h"

The tests

void svaria_SampleMean (unif01_Gen *gen, sres_Basic *res,
long N, long n, int r);

This test generates n uniforms u1, . . . , un and computes their average

un =
1
n

n∑
j=1

uj .

The distribution of the N values of un is compared with the exact theoretical distribution

P [nun ≤ z] =
1
n!

bzc∑
j=0

(−1)j

(
n

j

)
(z − j)n, 0 ≤ z ≤ n

given by Stephens [153] for n < 60, and to the normal distribution with mean 1/2 and variance
1/(12n) for n ≥ 60.

void svaria_SampleCorr (unif01_Gen *gen, sres_Basic *res,
long N, long n, int r, int k);

This test generates n uniforms u1, . . . , un and computes the empirical autocorrelation [38] of
lag k,

ρ̂k =
1

(n− k)

n−k∑
j=1

(
ujuj+k − 1

4

)
.

The empirical distribution of the N values of
√

12(n− k)ρ̂k is compared with the standard
normal distribution, which is its asymptotic theoretical distribution when n →∞. The approx-
imation is valid only when n is very large. Restriction: k � n.

void svaria_SampleProd (unif01_Gen *gen, sres_Basic *res,
long N, long n, int r, int t);

This test generates tn uniforms u1, . . . , utn and computes the empirical distribution of the
products of n nonoverlapping successive groups of t values, {u(j−1)t+1, u(j−1)t+2, . . . , ujt : j =
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1, . . . , n}. For N = 1, this test is equivalent to calling svaria_SumLogs (gen, res, n, t, r).
This distribution is compared with the theoretical distribution of the product of t independent
U(0, 1) random variables, given by

P [U1U2 . . . Ut ≤ x] = F (x) = x

t−1∑
j=0

(− lnx)j

j!

for 0 ≤ x ≤ 1, via an Anderson-Darling (AD) test. For N > 1, the empirical distribution of the
p-values of the AD test is compared with the AD distribution.

void svaria_SumLogs (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r);

This test generates n uniforms, u1, . . . , un, and computes

P = −2
n∑

j=1

ln(uj).

Under H0, P/2 is a sum of n i.i.d. exponentials of mean 1, so P has the chi-square distribution
with 2n degrees of freedom (see [154]).

void svaria_WeightDistrib (unif01_Gen *gen, sres_Chi2 *res, long N, long n,
int r, long k, double alpha, double beta);

Applies the test proposed by Matsumoto and Kurita [125], page 264. This test generates k
uniforms, u1, . . . , uk, and computes

W =
k∑

j=1

I[α ≤ uj < β],

the number of uj ’s falling in the interval [α, β). Under H0, W is a binomial random variable
with parameters k and p = β − α. This is repeated n times, thus obtaining W1, . . . ,Wn, whose
empirical distribution is compared with the binomial distribution via a chi-square test. For
the chi-square test, classes (possible values of W ) are regrouped as needed to ensure that the
expected numbers in each class is larger or equal to gofs_MinExpected.

void svaria_CollisionArgMax (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, long k, long m);

Applies a generalization of the test proposed by Sullivan [155]. This test generates k uniforms,
u1, . . . , uk, and computes

I = min
{

i | 1 ≤ i ≤ k and ui = max(u1, . . . , uk)
}

,

the index of the largest value. It repeats this n times and counts the number C of collisions
among the n values of I, which is equal to n minus the number of distinct values of I. If
m > 1, this is repeated m times and the empirical distribution of the m values of C is com-
pared with the theoretical distribution of C, given in [66] (see also sknuth_Collisions) by
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applying a chi-square test. For m = 1, this test is equivalent to the collision test applied
by smultin_Multinomial with smultin_GenerCell = smultin_GenerCellMax. Recommen-
dations: n ≤ k, and either m = 1 or m large enough for the chi-square test to make sense.

void svaria_SumCollector (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, double g);

Applies a test proposed by Ugrin-Sparac [165]. It generates a sequence of uniforms u0, u1, . . .
adds them up until their sum exceeds g. It then defines J = min{` ≥ 0 : u0 + · · · + u` > g}.
This is repeated n times, to obtain n copies of J , say J1, . . . , Jn, whose empirical distribution
is compared to the theoretical distribution given in [165], by a chi-square test. Restriction:
1 ≤ g ≤ 10.

void svaria_AppearanceSpacings (unif01_Gen *gen, sres_Basic *res,
long N, long Q, long K, int r, int s, int L);

Applies the “universal test” proposed by Maurer [127]. The goal of this test is to measure
the entropy of a sequence of random bits (it is somewhat related to the test applied by
sentrop_EntropyDisc). The test takes the s most significant bits (after dropping the first
r) from each uniform, and concatenates these s-bit blocks to construct Q + K blocks of L bits.
The first Q blocks are used for the initialization, and the K following blocks serve for the test
proper. For each of these K blocks, the function finds the number of blocks generated since the
most recent occurrence of the same block in the sequence. If it is generating the j-th block and
its most recent occurrence was in block (j − i)-th, it sets Aj = i; if it is its first occurrence, it
sets Aj = j. It then computes the average

Y =
1
K

Q+K∑
j=Q+1

log2 Aj ,

whose distribution under H0 is approximately normal with mean and variance given in [127]. A
better formula for the variance was given in [12] and that is the one used. The approximation
is good only when Q and K are very large. Recommendations: Q ≥ 10 × 2L and K � 2L.
Restrictions: s mod L = 0 if s > L.
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swalk

This module implements statistical tests based on discrete random walks over the set Z
of all integers. Similar tests are discussed, e.g., by Vattulainen [166, 167] and Takashima
[156].

The main function, swalk_RandomWalk1, applies simultaneously several tests based on a
random walk of length ` over the integers, for several (even) values of `. The random walk
is generated from a bit string produced by the generator by taking s bits per output value.
Each bit determines one step of the walk: move by 1 to the left if the bit is 0 and by 1 to
the right if the bit is 1. The function swalk_RandomWalk1a implements a variant where each
move of the walk is determined by taking a linear combination modulo 2 (i.e., exclusive-or)
of certain bits in the string.

The functions swalk_VarGeoP and swalk_VarGeoN implement “random walk” tests de-
fined in terms of real numbers. These tests were proposed in [150] and turn out to be special
cases of the gap test implemented in module sknuth_gap.

The parameter res is usually set to the NULL pointer. However, if one wants to examine
or post-process the results after a test, then one must explicitly create a res structure.
See the detailed version of this guide for the definition of the structures and the relevant
instructions.

#include "bitset.h"
#include "unif01.h"
#include "sres.h"

The tests

void swalk_RandomWalk1 (unif01_Gen *gen, swalk_Res *res, long N, long n,
int r, int s, long L0, long L1);

Applies various tests based on a random walk over the set of integers Z. The walk starts at 0
and at each step, it moves by one unit to the left with probability 1/2, and by one unit to the
right with probability 1/2. The test considers `-step random walks, for all even integers ` in
the interval [L0, L1]. It first generates a random walk of length ` = L0, then adds two steps
to obtain a random walk of length ` = L0 + 2, then adds two more steps for a walk of length
` = L0 + 4, and so on until ` = L1.

To generate the moves, the test uses one bit bi at each step i. It takes s bits from each uniform
(after dropping the first r). So for the entire walk of length L1, it needs dL1/se uniforms. Let
Xi = 1 if bi = 1, and Xi = −1 if bi = 0. Define also S0 = 0 and

Sk =
k∑

i=1

Xi, k ≥ 1.
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The process {Sk, k ≥ 0} is a random walk over the integers. Under H0, we have

pk,y = P [Sk = y] =

 2−k

(
k

(k + y)/2

)
if k + y is even;

0 if k + y is odd.

For ` even, we define the statistics:

H = `/2 + S`/2 =
∑̀
i=1

I[Xi = 1],

M = max {Sk, 0 ≤ k ≤ `} ,

J = 2
`/2∑
k=1

I[S2k−1 > 0],

Py = min {k : Sk = y} , y > 0,

R =
∑̀
k=1

I[Sk = 0],

C =
∑̀
k=3

I[Sk−2Sk < 0],

where I denotes the indicator function. Here, H is the number of steps to the right, M is the
maximum value reached by the walk, J is the fraction of time spent on the right of the origin,
Py is the first passage time at y, R is the number of returns to 0, and C is the number of sign
changes.

The test thus generates n random walks and computes the n values of each of these statistics.
It compares the empirical distribution of these n values with the corresponding theoretical law,
via a chi-square test (regrouping classes if needed).

The theoretical probabilities for these statistics under H0 are as follows:

P [H = k] = P [S` = 2k − `] = p`,2k−` = 2−`

(
`

k

)
, 0 ≤ k ≤ `,

P [M = y] = p`,y + p`,y+1, 0 ≤ y ≤ `,

P [J = k] = pk,0 p`−k,0, 0 ≤ k ≤ `, k even,

P [Py = k] = (y/k)pk,y,

P [R = y] = p`−y,y, 0 ≤ y ≤ `/2,

P [C = y] = 2p`−1,2y+1, 0 ≤ y ≤ (`− 1)/2.

The size of the memory used by the test is approximately 6L1(L1 − L0 + 1)/(105) megabytes.
Restrictions: r + s ≤ 32, L0 and L1 even, and L0 ≤ L1.

void swalk_RandomWalk1a (unif01_Gen *gen, swalk_Res *res, long N, long n,
int r, int s, int t, long L, bitset_BitSet C);

Applies the same collection of tests as swalk_RandomWalk1, except that ` takes a single value,
L, and that the Xi’s are defined in a different (more general) way, as follows. The parameter C
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contains a vector of fixed binary coefficients (bits) c0, . . . , ct−1, not all zero. The test generates
a long sequence of bits b0, b1, . . . and puts Xi = 1 if yi = c0bi + . . . + ct−1bi+t−1 is odd, Xi = −1
otherwise. Restrictions: r + s ≤ 32, t ≤ 31, and L even.

void swalk_VarGeoP (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, double Mu);

Applies a test based on the length of a certain “random walk”, proposed by [150]. This test
turns out to be a special case of the gap test implemented in sknuth_gap. It generates uniforms
until one of these uniforms is larger or equal to Mu and counts how many uniforms were needed
(the number of steps in the random walk). This is repeated n times, the number of walks of
each length is counted, and a chi-square test is applied to compare these counts to the their
expectations under H0. Restriction: Mu ∈ (0, 1).

void swalk_VarGeoN (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, double Mu);

Same as swalk_VarGeoP, but with “larger or equal to Mu” replaced by “less than 1 - Mu”.
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scomp

This module contains three tests based on the evolution of the linear complexity of a
sequence of bits as it grows, and a test based on the compressibility of the bit sequence, as
measured by the Lempel-Ziv complexity. For the compressibility test, we use the Lempel-Ziv
compression algorithm of 1978 (see [180]). A similar test is implemented in [36, 147], but
according to the authors, it uses a version of the Lempel-Ziv algorithm of 1977 instead [179].
The parameter res is usually set to the NULL pointer. However, if one wants to examine or
post-process the results after a test, then one must explicitly create a res structure. See the
detailed version of this guide for the definition of the structures and the relevant instructions.

#include "unif01.h"
#include "sres.h"

The tests

void scomp_LinearComp (unif01_Gen *gen, scomp_Res *res,
long N, long n, int r, int s);

This procedure applies simultaneously the jump complexity test and the jump size test, two tests
based on the linear complexity of a sequence of bits and described in [10, 36]. A sequence of n
bits is constructed by taking s bits from each random number. For each `, 1 ≤ ` ≤ n, the linear
complexity of the subsequence formed by the first ` bits is computed by the Berlekamp-Massey
algorithm [4, 121].

The jump complexity test counts the number of jumps occurring in the linear complexity of
the sequence. A jump occurs whenever adding the next bit to the sequence increases its linear
complexity. Under H0, for n sufficiently large, the number of jumps, say J , is approximately
normally distributed with mean and variance given by [169]:

E(J) =
n

4
+

4 + Rn

12
− 1

3(2n)
(3.9)

Var(J) =
n

8
− 2−Rn

9−Rn
+

n

6(2n)
+

6 + Rn

18(2n)
− 1

9(22n)
, (3.10)

where Rn is the parity of n (= 0 for even n, 1 for odd n). The test compares the standardized
value of the observed number of jumps to the standard normal distribution.

The jump size test looks at the size of the jumps (there is a jump of size h if the complexity
increases by h when we consider the next bit of the sequence), and counts how many jumps
of each size have occurred. It then compares these countings with the expected values via a
chi-square test. Carter has shown [10] that under H0, the jump sizes are i.i.d. random variables
which obey a geometric law with parameter 1/2.

When N is large enough, the procedure also applies a third test, taken from [147]. It is a
chi-square test based on the N replications of the statistic

Tn = (−1)n(Ln − ξn) + 2/9,
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where Ln is the linear complexity of the sequence, and ξn = n/2+(4+Rn)/18 is an approximation
of E[Ln] under H0. The statistic Tn takes only integer values, with probabilities given by (see
[147]):

P [T = k] =


0.5 for k = 0,

2−2k for k = 1, 2, 3, . . .

2−2|k|−1 for k = −1,−2,−3, . . .

Recommendation: take N = 1 and n large (however, computing the linear complexity takes
O(n2 log n) time).

void scomp_LempelZiv (unif01_Gen *gen, sres_Basic *res,
long N, int k, int r, int s);

Given a string of n = 2k bits, this test [147, 36] counts the number W of distinct patterns in
the string in order to determine its compressibility by the Lempel-Ziv compression algorithm
of 1978 (see [180]). According to [63], under H0,

Z =
W − n/log2 n√
0.266 n/(log2 n)3

,

has approximately the standard normal distribution for large n. However, our tests show that
even for n as large as 224, the approximation is not very good. Our implementation of the
test assumes that W has approximately the normal distribution, but uses estimates of its mean
and standard deviation that have been obtained through simulation with two differents reliable
generators. Restriction: k ≤ 28 and N not too large.
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sspectral

This module contains tests based on spectral methods. The tests currently available
compute the discrete Fourier transform for a string of n bits and look for deviations in
the spectrum that are inconsistent with H0. The parameter res is usually set to the NULL

pointer. However, if one wants to examine or post-process the results after a test, then one
must explicitly create a res structure. See the detailed version of this guide for the definition
of the structures and the relevant instructions.

#include "statcoll.h"
#include "gofw.h"
#include "unif01.h"
#include "sres.h"

The tests

void sspectral_Fourier1 (unif01_Gen *gen, sspectral_Res *res,
long N, int k, int r, int s);

This test is taken from [147]. Given a string of n = 2k bits, let Aj = −1 if the jth bit is 0 and
Aj = 1 if the jth bit is 1. Define the discrete Fourier coefficients

f` =
n−1∑
j=0

Aje
2πij`/n, ` = 0, 1, . . . , n− 1, (3.11)

where i =
√
−1, and let |f`| be the modulus of the complex number f`. Note that since the

Aj are real, the f` for ` > n/2 can be obtained simply from the f` with ` ≤ n/2. Let Oh

denote the observed number of |f`|’s, for ` ≤ n/2, that are smaller than h. According to
[147], under H0, for large enough n and h =

√
2.995732274n, Oh has approximately the normal

distribution with mean µ = 0.95n/2 and variance σ2 = 0.05µ. The test computes the N values
of the standardized statistic (Oh−µ)/σ and compares their distribution to the standard normal.
Restrictions: 8 ≤ k ≤ 20 and N very small.

void sspectral_Fourier2 (unif01_Gen *gen, sspectral_Res *res,
long N, int k, int r, int s);

This test, proposed and studied by Erdmann [36], computes S` = |f`|2/n, for ` = 0, 1, . . . , n−1,
where the Fourier coefficients f` are defined in (3.11). It is shown in [36] that under H0, each
S` has mean 1 and variance 1− 2/n for ` 6= 0. The test computes the sum

X =
n/4∑
`=1

S`,

which should be approximately normal with mean n/4 and variance equal to (n − 2)/4. It
compares the distribution of the N values of X with the normal distribution. Restrictions:
4 ≤ k ≤ 26 and N very small. Recommendations: N = 1.
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void sspectral_Fourier3 (unif01_Gen *gen, sspectral_Res *res,
long N, int k, int r, int s);

For each `, let X` denote the sum of the N copies of S`, where S` is computed and defined
as in sspectral_Fourier2. The central limit theorem ensures that for N large enough, X`

should be approximately normal with mean N and variance NV`. This test compares the
empirical distribution of the n/4 normal variables X`, ` = 1, 2, . . . , n/4, to the standard normal
distribution. Restriction: 4 ≤ k ≤ 26. Recommendation: N ≥ 2k.
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sstring

This module implements different tests that are applied to strings of random bits. Each
test takes a block of s bits from each uniform and concatenate them to construct bit strings.
The parameter res is usually set to the NULL pointer. However, if one wants to examine or
post-process the results after a test, then one must explicitly create a res structure. See the
detailed version of this guide for the definition of the structures and the relevant instructions.

#include "tables.h"
#include "unif01.h"
#include "sres.h"

The tests

void sstring_PeriodsInStrings (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, int s);

This function applies a test based on the distribution of the correlations in bit strings of length
s. The correlation of a bit string b = b0b1 · · · bs−1 is defined as the bit vector c = c0c1 · · · cs−1

such that cp = 1 if and only if p is a period of b, i.e. if and only if bi = bi+p for i = 0, . . . , s−p−1
(see Guibas and Odlyzko [50]). One always has c0 = 1.

The function first enumerates all possible correlations c for bit strings of length s, and computes
the expected number of strings of correlation c, Es(c) = nLs(c)/2s, where Ls(c) is the number
of strings, among all 2s strings of length s, having correlation c. These numbers are computed
as explained in [50]. Then, n strings of length s are generated, by generating n uniforms and
keeping the s most significant bits of each (after discarding the first r), the corresponding
correlations are computed, and the number of occurrences of each correlation is computed.
These countings are compared with the corresponding expected values via a chi-square test,
after regrouping classes if needed to make sure that the expected number of values in each class
is at least gofs_MinExpected. Restrictions: 2 ≤ s ≤ 31, r + s ≤ 31, n/2 > gofs_MinExpected.

void sstring_LongestHeadRun (unif01_Gen *gen, sstring_Res2 *res,
long N, long n, int r, int s, long L);

This test generates n blocks of L bits by taking s bits from each of nbL/sc successive uniforms.
In each block, it finds the length ` of the longest run of successive 1’s, and counts how many
times each value of ` has occurred. It then compares these countings to the corresponding
expected values via a chi-square test, after regrouping classes if needed. The expected values
(i.e., the theoretical distribution) are computed as described in [43], [47] and [147, p. 21]. It
also finds the length ` of the longest run of 1’s over all blocks of all N replications and compares
it with the theoretical distribution. Restrictions: L ≥ 1000, r + s ≤ 32.
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void sstring_HammingWeight (unif01_Gen *gen, sres_Chi2 *res,
long N, long n, int r, int s, long L);

This test is a one-dimensional version of sstring_HammingIndep. It generates n blocks of L
bits and examines the proportion of 1’s within each (non-overlapping) L-bit block. Under H0,
the number of 1’s in each block are i.i.d. binomial random variables with parameters L and 1/2
(with mean L/2 and variance L/4). Let Xj be the number of blocks amongst n, having j 1’s (i.e.,
with Hamming weight j). The observed numbers of blocks having j 1’s are compared with the
expected numbers via a chi-square test. Restrictions: r+s ≤ 32 and n ≥ 2∗ gofs_MinExpected.

void sstring_HammingWeight2 (unif01_Gen *gen, sres_Basic *res,
long N, long n, int r, int s, long L);

This test is taken from [147]. Given a string of n bits, the test examines the proportion of 1’s
within (non-overlapping) L-bit blocks. It partitions the bit string into K = bn/Lc blocks. Let
Xj be the number of 1’s in block j (i.e., its Hamming weight). Under H0, the Xj ’s are i.i.d.
binomial random variables with parameters L and 1/2 (with mean L/2 and variance L/4). The
test computes the chi-square statistic

X2 =
K∑

j=1

(Xj − L/2)2

L/4
=

4
L

K∑
j=1

(Xj − L/2)2,

which should have approximately the chi-square distribution with K degrees of freedom if L is
large enough. For L = n, this test degenerates to the monobit test used in [147], which simply
counts the proportion of 1’s in a string of n bits. Restrictions: r + s ≤ 32, L ≤ n and L large.

void sstring_HammingCorr (unif01_Gen *gen, sstring_Res *res,
long N, long n, int r, int s, int L);

Applies a correlation test on the Hamming weights of successive blocks of L bits (see [91]). It is
strongly related to the test sstring_HammingIndep below. The test uses the s most significant
bits from each generated random number (after dropping the first r bits) to build n blocks of
L bits. Let Xj be the Hamming weight (the numbers of bits equal to 1) of the jth block, for
j = 1, . . . , n. The test computes the empirical correlation between the successive Xj ’s,

ρ̂ =
4

(n− 1)L

n−1∑
j=1

(Xj − L/2) (Xj+1 − L/2) .

Under H0, as n → ∞, ρ̂
√

n− 1 has asymptotically the standard normal distribution. This is
what is used in the test. The test is valid only for large n.

void sstring_HammingIndep (unif01_Gen *gen, sstring_Res *res,
long N, long n, int r, int s, int L, int d);

Applies two tests of independence between the Hamming weights of successive blocks of L bits.
These tests were introduced by L’Ecuyer and Simard [91]. They use the s most significant
bits from each generated random number (after dropping the first r bits) to build 2n blocks
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of L bits. Let Xj be the Hamming weight (the numbers of bits equal to 1) of the jth block,
for j = 1, . . . , 2n. Each vector (Xi, Xi+1) can take (L + 1) × (L + 1) possible values. The
test counts the number of occurrences of each possibility among the non-overlapping pairs
{(X2j−1, X2j), 1 ≤ j ≤ n}, and compares these observations with the expected numbers under
H0, via a chi-square test, after lumping together in a single class all classes for which the
expected number is less than gofs_MinExpected. Restriction: n ≥ 2∗gofs_MinExpected.

The function also applies the following (second) test on these countings, which are placed in a
(L + 1)× (L + 1) matrix in the natural way. First, the 2d− 1 rows and 2d− 1 columns at the
center of the matrix are discarded if L is even, and the 2d − 2 central rows and columns are
discarded if L is odd. There remain four submatrices, at the four corners. Now, let Y1 be the
sum of the counters in the lower left and upper right submatrices, Y2 the sum of the counters
in the lower right and upper left submatrices, and Y3 = n − Y1 − Y2. The observed values of
Y1, Y2 and Y3 are compared with their expected values with a chi-square test. The chi-square
statistic has 1 degree of freedom if d = 1 and m is odd (because Y3 = 0 in that case), and 2
degrees of freedom otherwise. Restrictions: d ≤ 8, d ≤ (L + 1)/2. If d is too large for a given
n, the expected numbers in the categories will be too small for the chi-square to be valid.

void sstring_Run (unif01_Gen *gen, sstring_Res3 *res,
long N, long n, int r, int s);

This is a version of the run test applicable to a bit string. It is also related to the gap test. In
a bit string of length n, the runs of successive 1’s can be seen as gaps between the blocks of
successive 0’s. These gap (or run) lengths are independent geometric random variables, plus 1;
i.e., each run has length i with probability 2−i, for i = 1, 2, . . .. Of course, this is also true if we
swap 0 and 1 and look at the runs of 0’s.

Suppose we construct a bit string until we have n runs of 1’s and n runs of 0’s, i.e., a total of
2n runs. Select some positive integer k. For j = 0 and 1, let Xj,i be the number of runs of
j’s of length i for i = 1, . . . , k − 1, and let Xj,k be the number of runs of j’s of length ≥ k.
Under H0, for each j, (Xj,1, . . . , Xj,k−1, Xj,k) is a multinomial random vector with parameters
(n, p1, p2, . . . , pk−1, pk), where pi = 2−i for 1 ≤ i < k and pk = pk−1 = 2−k+1. Then, if npk is
large enough, the chi-square statistic

X2
j =

k∑
i=1

(Xj,i − npi)2

npi(1− pi)

has approximately the chi-square distribution with k−1 degrees of freedom. Moreover, X2
0 and

X2
1 are independent, so X2 = X2

0 +X2
1 should be approximately chi-square with 2(k−1) degrees

of freedom. The test is based on the statistic X2 and uses k = 1+blog2(n/gofs_MinExpected)c.

Another test, applied simultaneously, looks at the total number Y of bits to get the 2n runs.
Under H0, Y is the sum of 2n independent geometric random variables with parameter 1/2, plus
2n. For large n, it is approximately normal with mean 4n and variance 8n, so Z = (Y −4n)/

√
8n

is approximately standard normal. This second test, based on Z, is practically equivalent to
the run test proposed in [147], which counts the total number of runs for a fixed number of bits.
Restrictions: r + s ≤ 32.
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void sstring_AutoCor (unif01_Gen *gen, sres_Basic *res,
long N, long n, int r, int s, int d);

This test measures the autocorrelation between bits at lag d. [36] It generates a n-bit string
and computes

Ad =
n−d∑
i=1

bi ⊕ bi+d,

where bi is the ith bit in the string and ⊕ denotes the exclusive-or operation. Under H0, Ad

has the binomial distribution with parameters (n− d, 1/2), so

2Ad − (n− d)√
n− d

should be approximately standard normal for large n−d. Restrictions: r+s ≤ 32, 1 ≤ d ≤ bn/2c,
n− d large enough for the normal approximation to make sense.
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sspacings

This module implements tests based on sum functions of the spacings between the sorted
observations of a sample of independent uniforms. These tests are studied by L’Ecuyer [78].

Let u1, . . . , un be a sample of n uniforms over (0, 1), and u(1), . . . , u(n) their values sorted
by increasing order. Define u(0) = 0 and u(n+i) = 1 + u(i−1) for i > 1. For m < n, the
overlapping spacings of order m are

Gm,i = U(i+m) − U(i), 0 ≤ i ≤ n.

The general classes of goodness-of-fit statistics considered here are

Hm,n =
n−m+1∑

i=0

h(nGm,i) (3.12)

and

H(c)
m,n =

n∑
i=0

h(nGm,i). (3.13)

where h is some smooth function. Such statistics are discussed, e.g., in [140, 68, 141, 51, 78].
The form (3.13) is a circular version that puts the observations in a circle before computing
the spacings.

Under mild assumptions on h and after being properly standardized, these statistics are
asymptotically normal as n →∞, either for fixed m or when m →∞ no faster than O(np)
for 0 < p < 1 (see, e.g., [21, 51, 56, 68]). In this module, they are standardized using the
exact mean and variance whenever this is possible.

The functions sspacings_AllSpacings and sspacings_AllSpacings2 apply several
tests of the form (3.12) and (3.13) simultaneously on the same sample. Other functions
apply only specific tests.

The parameter res is usually set to the NULL pointer. However, if one wants to examine
or post-process the results after a test, then one must explicitly create a res structure.
See the detailed version of this guide for the definition of the structures and the relevant
instructions.

#include "unif01.h"
#include "sres.h"

The tests

void sspacings_SumLogsSpacings (unif01_Gen *gen, sspacings_Res *res,
long N, long n, int r, int m);

Applies a test based on the sum of the logarithms of the spacings of order m in a sample of n
uniforms. The test statistic is

L(c)
m,n =

n∑
i=0

ln(nGm,i).
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This is the circular version. Under H0, this statistic is approximately normally distributed for
large n, and exact formulas for E[L(c)

m,n] and Var[L(c)
m,n] are given in [16, 78].

void sspacings_SumSquaresSpacings (unif01_Gen *gen, sspacings_Res *res,
long N, long n, int r, int m);

Similar to sspacings_SumLogsSpacings, except that the test statistic is the sum of the squares
of the spacings of order m,

S(c)
m,n =

n∑
i=0

(nGm,i)2.

Under H0, it is approximately normally distributed for large n. Exact formulas for E[S(c)
m,n] and

Var[S(c)
m,n] (as well as for its non-circular version) are given in [17, 78].

void sspacings_ScanSpacings (unif01_Gen *gen, sspacings_Res *res,
long N, long n, int r, double d);

The test statistic here is the largest number of values U(i) falling in a window of witdh d when
this window scans the interval [0, 1]:

S(L) = max
0≤i≤n

max
{
j − i + 1 | j ≥ 1 and U(j) − U(i) ≤ d

}
.

The (discrete) distribution of S(L) has been investigated in [2, 18, 168], and other references
given in [154] (see also fbar_Scan).

void sspacings_AllSpacings (unif01_Gen *gen, sspacings_Res *res,
long N, long n, int r, int m0, int m1, int d,
int LgEps);

This function applies simultaneously different tests based on the statistics defined in (3.12) and
(3.13), for h(x) = ln x and h(x) = x2, for m varying from m0 to m1 by steps of length d.
For example, if (m0,m1, d) = (1, 10, 3), the tests will be performed for m = 1, 4, 7, 10, while
if (m0,m1, d) = (1, 10, 2), it will be performed for m = 1, 3, 5, 7, 9. If m0 = 0, the program
considers all m in {1, d, 2d, . . .} such that m ≤ m1. For example, if (m0,m1, d) = (0, 11, 3),
the tests will be performed for m = 1, 3, 6, 9. When h(x) = ln x, any spacing equal to zero is
reset to ε, where log2 ε = −LgEps. If the generator being tested returns b bits of precision, it is
recommended to choose LgEps = b + 1.

void sspacings_AllSpacings2 (unif01_Gen *gen, sspacings_Res *res,
long N, long n, int r, int m0, int m1, int d,
int LgEps);

Similar to sspacings_AllSpacings, except that only the circular versions using the exact mean
and variance are applied.
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scatter

This module is useful for producing 2-dimensionnal scatter plots of N points obtained
from a uniform random number generator. The N points are generated in the t-dimensional
unit hypercube [0, 1]t, either by taking vectors of t successive output values from the gener-
ator, or by taking t non-successive values at pre-specified lags. The vectors can overlap or
not. Thus, in the case of successive values for overlapping vectors, for instance, N + t − 1
uniforms are needed.

A rectangular box R is defined in [0, 1]t by defining bounds Li < Hi for each coordinate
i, for 1 ≤ i ≤ t. All the points falling outside that box are discarded. Two coordinate
numbers are selected in {1, . . . , t}, say rx and ry, then all the points are projected on the
two-dimensional subspace determined by these two coordinates, and these projected points
are shown on the plot.

The plots can appear directly on the computer screen (using Gnuplot) or can be stored in
a file, in a format chosen by the user (currently, the format is either for LATEX or for Gnuplot).
Three different functions are available for producing the scatter plots: scatter_PlotUnif

reads the data in a file, scatter_PlotUnif1 receives all the data in its parameters, and
scatter_PlotUnifInterac gets the data interactively from the user.

N Number of points
t Dimension of vectors
Over TRUE if we want overlapping vectors, FALSE otherwise
rx ry Components to be plotted
r1 Lr1 Hr1 Axis number and bounds for xr1

...
...

t Lt Ht Dimension and bounds for xt

Width Height Physical dimensions of plot (in cm)
Output Output format: latex, gnu_ps, gnu_term

Precision Number of decimal digits for the points
Lacunary TRUE if we want lacunary indices, FALSE otherwise
i1 First lacunary index
...

...
it tth lacunary index

Figure 3.3: General format of the data file for scatter.

Figure 3.3 gives the general format of the data file needed by scatter_PlotUnif. This
file must have the extension “.dat”. The right side (in the figure and in the file) contains
optional (but useful) comments that are disregarded by the program. The values of the
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variables on the left must appear in the file, in the same format. There should be no blank
line. The name of the file is passed as an argument to the function, without the “.dat”
extention.

The first line contains an integer N , the total number of points to generate. The second
line gives the dimension t of the hypercube. In the third line, Over is a boolean indicating
whether the vector coordinates overlap (TRUE) or not (FALSE). The next line gives the two
coordinate numbers rx and ry selected for the plot. Each of the following lines contains a
coordinate number ri (an integer from 1 to t), and the lower and upper boundaries Lri

and
Hri

(real) of the box R along the coordinate xri
. One must have 0 ≤ Li < Hi ≤ 1. For

the coordinates that do not appear here, the boundaries are set to 0.0 and 1.0 by default.
The last coordinate (ri = t) must always appear. On the next line, Width and Height
(real) specify the physical dimensions (in cm) of the rectangle for the plot (on paper). The
variable Output specifies the format of the output file. The values currently allowed are
latex, gnu_ps, gnu_term, and they correspond to creating a file for LATEX, creating a file
for Gnuplot, and showing the plot on the screen using Gnuplot, respectively. The variable
Precision specifies the number of decimal digits to be printed for the points coordinates. If
the boolean variable Lacunary is FALSE, the vectors are constructed from successive output
values of the generator, and all the lines that follow are discarded. If Lacunary is TRUE, the
t lines that follow must give the values of the t lacunary indices i1 < · · · < it (integers). The
points used in the plot are {(ui1+n, . . . , uit+n), n = 0, . . . , N − 1} in the overlapping case.

As an illustration, suppose the data file is called dice.dat. If the output format is latex,
the output file dice.tex will be created by the program. The command latex dice.tex

can then produce a file dice.dvi that contains the plot. If the output format is gnu_ps

or gnu_term, the two files dice.gnu and dice.gnu.points are created. The file dice.gnu

contains a set of gnuplot commands to plot the points, which are kept in dice.gnu.points.
The command gnuplot dice.gnu can then produce the scatter plot either on the terminal
(if the output format was gnu_term) or in a PostScript file (if the output format was gnu_ps).

An example. Figure 3.4 gives an example of a small program that creates a scatter
plot of numbers produced by the random number generator RAND() of Microsoft Excel.
A long sequence of numbers was previously generated by Excel and saved in the ASCII file
excel.pts. In the program, the instruction gen = ufile_CreateReadText ("excel.pts")

says that the generator gen will now simply reads its numbers from that file. Then, the
instruction scatter_PlotUnif (gen, "excel") calls a function that plots the points after
reading the data related to the plot in file excel.dat. Figure 3.5 show this data file.

The program will generate N = 1.5 million points (ui, ui+1), with overlapping, and show
those whose first coordinate is between 0 and 0.0005. The output will be in the LATEX file
excel.tex. Figure 3.6 shows the scatter plot created by LATEX.

The values produced by this generator obey the linear recurrence ui = (9821.0 ui−1 +
0.211327) mod 1, where the numbers ui are represented with 15 decimal digits of precision.
This linear relationship shows up very well in the graph: All the points are on equidistant
parallel lines with slope 9821. This is obviously a bad generator.
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#include "unif01.h"
#include "ufile.h"
#include "scatter.h"

int main (void)
{

unif01_Gen *gen;
gen = ufile_CreateReadText ("excel.pts", 100000);
scatter_PlotUnif (gen, "excel");
ufile_DeleteReadText (gen);
return 0;

}

Figure 3.4: Example of a program to create a scatter plot.

1500000 Number of points
2 Dimension = t
TRUE Overlapping
1 2 Components shown
1 0.0 0.0005 Component and bounds on x1
2 0.0 1.0 Component and bounds on xt
13.0 13.0 Size of plot in centimeters
latex Output format: latex, gnu_term or gnu_ps
8 Precision
FALSE Lacunary
1 Lacunary indices
3

Figure 3.5: The data file excel.dat.

Figure 3.7 shows another example using the random number generator in Microsoft Vi-
sualBasic. The example shows how to plot a scatter diagram without reading any data file.
Here, the parameters are passed directly to the function scatter_PlotUnif1. We use the
hypercube in 3 dimensions, and the plotting procedure is called for coordinates x1 and x3.
Since the Lacunary flag is TRUE, the procedure will not use every random number gener-
ated, but will use only those selected by the lacunary indices {1, 2, 6} (see the documentation
in unif01_CreateLacGen). The results will be written in file bone.tex.

#include "gdef.h"
#include "unif01.h"
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Generator: ufile_CreateReadText: excel.pts
Hypercube in 2 dimensions.

Over = TRUE
0 < un < 0.0005

Number of vectors generated: 1500000.
Number of points plotted: 711.

Total CPU time : 5.98 seconds.

Figure 3.6: Scatter plot for the Microsoft Excel 97 generator
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#include "unif01.h"
#include "usoft.h"
#include "scatter.h"

int Proj[] = { 1, 3 };
long LacI[] = { 1, 2, 6};
double Lower[] = { 0.0, 0.0, 0.0 };
double Upper[] = { 0.0001, 0.5, 1.0 };

int main (void)
{

unif01_Gen *gen;

gen = usoft_CreateVisualBasic (12345);
scatter_PlotUnif1 (gen, 10000000, 3, FALSE, Proj, Lower, Upper,

scatter_latex, 8, TRUE, LacI, "bone");
usoft_DeleteGen (gen);
return 0;

}

Figure 3.7: Example, with lacunary indices, for creating a scatter plot.

Types

typedef enum {
scatter_latex, /* Latex format */
scatter_gnu_ps, /* gnuplot format for Postscript file */
scatter_gnu_term /* Interactive gnuplot format */
} scatter_OutputType;

Possible formats for the output files containing the plots.

Constant

#define scatter_MAXDIM 64

Maximal number of dimensions.

The plotting functions

void scatter_PlotUnif (unif01_Gen *gen, char *F);

Creates a scatter plot, using the generator gen and the parameters N, t, . . . given in file F.dat,
in the format specified in Figure 3.3. (The data file must have the extension .dat, but the
argument F must be the file name without the extension.) The results are written in file F.tex
or F.gnu, depending on the value of the field scatter_Output in the data file. For example,
the instruction scatter_PlotUnif (gen, "dice") will read the data in file dice.dat and plot
the figure using the parameters in this file.
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void scatter_PlotUnif1 (unif01_Gen *gen, long N, int t, boolean Over,
int Proj[2], double Lower[], double Upper[], scatter_OutputType Output,
int Prec, boolean Lac, long LacI[], char *Name);

Similar to scatter_PlotUnif, except that the data are passed as arguments to the function
instead of being read in a file. Here, N is the number of points to generate, t is the dimension,
Proj[0..1] are the two values of the coordinates to be projected, Lower[0..(t-1)] gives the
lower bounds of the values to be considered, Upper[0..(t-1)] gives the upper bounds of the
values to be considered, Over is TRUE iff the coordinates of the points overlap, Lac is TRUE iff we
consider lacunary values of the generator, LacI[0..(t-1)] gives the t lacunary indices, Name
is the name (without extension) of the output file, and Prec is the number of decimal digits
required for each written value. The constraints on these values are as explained earlier.

void scatter_PlotUnifInterac (unif01_Gen *gen);

Similar to scatter_PlotUnif, except that the data are given interactively on the terminal.
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Chapter 4

BATTERIES OF TESTS

This chapter describes predefined batteries of tests available in TestU01. Some batteries are
fast and small, and may be used as a first step in detecting gross defects in generators or
errors in their implementation. Other batteries are more stringent and take longer to run.
Special batteries are also available to test a stream of random bits taken from a file.

An example: The battery SmallCrush applied to a generator.

Figure 4.1 shows how to apply a battery of tests to a generator. The function call to
ulcg_CreateLCG creates and initializes the generator gen to the linear congruential generator
(LCG) with modulus m = 2147483647, multiplier a = 16807, additive constant c = 0, and
initial state x0 = 12345. Then the small battery SmallCrush, defined in module bbattery,
is applied on this generator. Figure 4.2 shows a summary report of the results (assuming
that 64-bits integers are available; otherwise, the results could be slightly different). Out of
the 15 tests applied, the generator failed three with a p-value practically equal to 0, so it is
clear that it failed this battery. It took 20.3 seconds to run this battery on a machine with
a 2400 MHz Athlon processor running under Linux.

#include "ulcg.h"
#include "unif01.h"
#include "bbattery.h"

int main (void)
{

unif01_Gen *gen;
gen = ulcg_CreateLCG (2147483647, 16807, 0, 12345);
bbattery_SmallCrush (gen);
ulcg_DeleteGen (gen);
return 0;

}

Figure 4.1: Applying the battery SmallCrush on a LCG generator.
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========= Summary results of SmallCrush =========

Version: TestU01-1.0
Generator: ulcg_CreateLCG
Number of statistics: 15
Total CPU time: 00:00:19.35
The following tests gave p-values outside [0.001, 0.9990]:
(eps means a value < 1.0e-300):
(eps1 means a value < 1.0e-15):

Test p-value
----------------------------------------------
1 BirthdaySpacings eps
2 Collision eps
6 MaxOft eps
----------------------------------------------
All other tests were passed

Figure 4.2: Results of applying SmallCrush.

Another example: The battery Rabbit applied to a binary file.

Figure 4.3 shows how to apply the battery Rabbit to a binary file (presumably, a file of
random bits). The tests will use at most 1048576 (= 220) bits from the binary file named
vax.bin. (Incidentally, these bits were obtained by taking the 32 most significant bits
from each uniform number generated by the well-known LCG with parameters m = 232,
a = 69069 and c = 1. This was the random number generator used under VAX/VMS.) Since
the variable swrite_Basic is set to FALSE, no detailed output is written, only the summary
report shown in Figure 4.4 is printed after running the tests. Seven tests were failed with a
p-value practically equal to 0 or 1. It is clear that the null hypothesis H0 must be rejected
for this bit stream. It took 1.9 seconds to run the entire battery on a machine with a 2400
MHz Athlon processor running under Linux.

#include "gdef.h"
#include "swrite.h"
#include "bbattery.h"

int main (void)
{

swrite_Basic = FALSE;
bbattery_RabbitFile ("vax.bin", 1048576);
return 0;

}

Figure 4.3: Applying the battery Rabbit on a file of random bits.
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========= Summary results of Rabbit =========

Version: TestU01-1.0
File: vax.bin
Number of bits: 1048576
Number of statistics: 38
Total CPU time: 00:00:01.77
The following tests gave p-values outside [0.001, 0.9990]:
(eps means a value < 1.0e-300):
(eps1 means a value < 1.0e-15):

Test p-value
----------------------------------------------
4 AppearanceSpacings 1.1e-4
7 Fourier1 eps
8 Fourier3 3.2e-213
13 HammingCorr, L = 64 1 - eps1
16 HammingIndep, L = 32 eps
17 HammingIndep, L = 64 eps
24 RandomWalk1 M eps
24 RandomWalk1 J eps
----------------------------------------------
All other tests were passed

Figure 4.4: Results of applying Rabbit.
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bbattery

This module contains predefined batteries of statistical tests for sources of random bits
or sequences of uniform random numbers in the interval [0, 1). To test a RNG for general
use, one could first apply the small and fast battery SmallCrush. If it passes, one could then
apply the more stringent battery Crush, and finally the yet more time-consuming battery
BigCrush. The batteries Alphabit and Rabbit can be applied on a binary file considered as
a source of random bits. They can also be applied on a programmed generator. Alphabit has
been defined primarily to test hardware random bits generators. The battery pseudoDIEHARD

applies most of the tests in the well-known DIEHARD suite of Marsaglia [106]. The battery
FIPS_140_2 implements the small suite of tests of the FIPS-140-2 standard from NIST.

The batteries described in this module will write the results of each test (on standard
output) with a standard level of details (assuming that the boolean switches of module
swrite have their default values), followed by a summary report of the suspect p-values
obtained from the specific tests included in the batteries. It is also possible to get only the
summary report in the output, with no detailed output from the tests, by setting the boolean
switch swrite_Basic to FALSE.

Some of the tests compute more than one statistic using the same stream of random
numbers and these statistics are thus not independent. That is why the number of statistics
in the summary reports is larger than the number of tests in the description of the batteries.

#include "unif01.h"

extern int bbattery_NTests;

The maximum number of p-values in the array bbattery_pVal. For small sample size, some
of the tests in the battery may not be done. Furthermore, some of the tests computes more
than one statistic and its p-value, so bbattery_NTests will usually be larger than the number
of tests in the battery.

extern double bbattery_pVal[];

This array keeps the p-values resulting from the battery of tests that is currently applied (or
the last one that has been called). It is used by any battery in this module. The p-value of the
j-th test in the battery is kept in bbattery_pVal[j − 1], for 1 ≤ j ≤ bbattery_NTests.

extern char *bbattery_TestNames[];

This array keeps the names of each test from the battery that is currently applied (or the last
one that has been called). It is used by any battery in this module. The name of the j-th test
in the battery is kept in bbattery_TestNames[j − 1], for 1 ≤ j ≤ bbattery_NTests.
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The batteries of tests

void bbattery_SmallCrush (unif01_Gen *gen);

void bbattery_SmallCrushFile (char *filename);

Both functions applies SmallCrush, a small and fast battery of tests, to a RNG. The func-
tion bbattery_SmallCrushFile applies SmallCrush to a RNG given as a text file of floating-
point numbers in [0, 1); the file requires about 3600 Megs of memory (less if the precision is
smaller than 16 decimals). The file will be rewound to the beginning before each test. Thus
bbattery_SmallCrush applies the tests on one unbroken stream of successive numbers, while
bbattery_SmallCrushFile applies each test on the same sequence of numbers. Some of these
tests assume that gen returns at least 30 bits of resolution; if this is not the case, then the
generator is most likely to fail these particular tests.

The following tests are applied:

1. smarsa_BirthdaySpacings with N = 1, n = 5 ∗ 106, r = 0, d = 230, t = 2, p = 1.

2. sknuth_Collision with N = 1, n = 5 ∗ 106, r = 0, d = 216, t = 2.

3. sknuth_Gap with N = 1, n = 2 ∗ 105, r = 22, Alpha = 0, Beta = 1/256.

4. sknuth_SimpPoker with N = 1, n = 4 ∗ 105, r = 24, d = 64, k = 64.

5. sknuth_CouponCollector with N = 1, n = 5 ∗ 105, r = 26, d = 16.

6. sknuth_MaxOft with N = 1, n = 2 ∗ 106, r = 0, d = 105, t = 6.

7. svaria_WeightDistrib with N = 1, n = 2 ∗ 105, r = 27, k = 256, Alpha = 0, Beta
= 1/8.

8. smarsa_MatrixRank with N = 1, n = 20000, r = 20, s = 10, L = k = 60.

9. sstring_HammingIndep with N = 1, n = 5 ∗ 105, r = 20, s = 10, L = 300, d = 0.

10. swalk_RandomWalk1 with N = 1, n = 106, r = 0, s = 30, L0 = 150, L1 = 150.

void bbattery_RepeatSmallCrush (unif01_Gen *gen, int rep[]);

This function applies specific tests of SmallCrush on generator gen. Test numbered i in the
enumeration above will be applied rep[i] times successively on gen. Those tests with rep[i]
= 0 will not be applied. This is useful when a test in SmallCrush had a suspect p-value, and
one wants to reapply the test a few more times to find out whether the generator failed the test
or whether the suspect p-value was a statistical fluke. Restriction: Array rep must have one
more element than the number of tests in SmallCrush.
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void bbattery_Crush (unif01_Gen *gen);

Applies the battery Crush, a suite of stringent statistical tests, to the generator gen. The
battery includes the classical tests described in Knuth [66] as well as many other tests. Some
of these tests assume that gen returns at least 30 bits of resolution; if that is not the case, then
the generator will certainly fail these particular tests. One test requires 31 bits of resolution:
the BirthdaySpacings test with t = 2. On a PC with an AMD Athlon 64 Processor 4000+ of
clock speed 2400 MHz running with Red Hat Linux, Crush will require around 1 hour of CPU
time. Crush uses approximately 235 random numbers. The following tests are applied:

1. smarsa_SerialOver with N = 1, n = 5 ∗ 108, r = 0, d = 212, t = 2.

2. smarsa_SerialOver with N = 1, n = 3 ∗ 108, r = 0, d = 26, t = 4.

3. smarsa_CollisionOver with N = 10, n = 107, r = 0, d = 220, t = 2.

4. smarsa_CollisionOver with N = 10, n = 107, r = 10, d = 220, t = 2.

5. smarsa_CollisionOver with N = 10, n = 107, r = 0, d = 210, t = 4.

6. smarsa_CollisionOver with N = 10, n = 107, r = 20, d = 210, t = 4.

7. smarsa_CollisionOver with N = 10, n = 107, r = 0, d = 32, t = 8.

8. smarsa_CollisionOver with N = 10, n = 107, r = 25, d = 32, t = 8.

9. smarsa_CollisionOver with N = 10, n = 107, r = 0, d = 4, t = 20.

10. smarsa_CollisionOver with N = 10, n = 107, r = 28, d = 4, t = 20.

11. smarsa_BirthdaySpacings with N = 5, n = 2 ∗ 107, r = 0, d = 231, t = 2, p = 1.

12. smarsa_BirthdaySpacings with N = 5, n = 2 ∗ 107, r = 0, d = 221, t = 3, p = 1.

13. smarsa_BirthdaySpacings with N = 5, n = 2 ∗ 107, r = 0, d = 216, t = 4, p = 1.

14. smarsa_BirthdaySpacings with N = 3, n = 2 ∗ 107, r = 0, d = 29, t = 7, p = 1.

15. smarsa_BirthdaySpacings with N = 3, n = 2 ∗ 107, r = 7, d = 29, t = 7, p = 1.

16. smarsa_BirthdaySpacings with N = 3, n = 2 ∗ 107, r = 14, d = 28, t = 8, p = 1.

17. smarsa_BirthdaySpacings with N = 3, n = 2 ∗ 107, r = 22, d = 28, t = 8, p = 1.

18. snpair_ClosePairs with N = 10, n = 2 ∗ 106, r = 0, t = 2, p = 0, m = 30.

19. snpair_ClosePairs with N = 10, n = 2 ∗ 106, r = 0, t = 3, p = 0, m = 30.

20. snpair_ClosePairs with N = 5, n = 2 ∗ 106, r = 0, t = 7, p = 0, m = 30.
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21. snpair_ClosePairsBitMatch with N = 4, n = 4 ∗ 106, r = 0, t = 2.

22. snpair_ClosePairsBitMatch with N = 2, n = 4 ∗ 106, r = 0, t = 4.

23. sknuth_SimpPoker with N = 1, n = 4 ∗ 107, r = 0, d = 16, k = 16.

24. sknuth_SimpPoker with N = 1, n = 4 ∗ 107, r = 26, d = 16, k = 16.

25. sknuth_SimpPoker with N = 1, n = 107, r = 0, d = 64, k = 64.

26. sknuth_SimpPoker with N = 1, n = 107, r = 24, d = 64, k = 64.

27. sknuth_CouponCollector with N = 1, n = 4 ∗ 107, r = 0, d = 4.

28. sknuth_CouponCollector with N = 1, n = 4 ∗ 107, r = 28, d = 4.

29. sknuth_CouponCollector with N = 1, n = 107, r = 0, d = 16.

30. sknuth_CouponCollector with N = 1, n = 107, r = 26, d = 16.

31. sknuth_Gap with N = 1, n = 108, r = 0, Alpha = 0, Beta = 1/8.

32. sknuth_Gap with N = 1, n = 108, r = 27, Alpha = 0, Beta = 1/8.

33. sknuth_Gap with N = 1, n = 5 ∗ 106, r = 0, Alpha = 0, Beta = 1/256.

34. sknuth_Gap with N = 1, n = 5 ∗ 106, r = 22, Alpha = 0, Beta = 1/256.

35. sknuth_Run with N = 1, n = 5 ∗ 108, r = 0, Up = TRUE.

36. sknuth_Run with N = 1, n = 5 ∗ 108, r = 15, Up = FALSE.

37. sknuth_Permutation with N = 1, n = 5 ∗ 107, r = 0, t = 10.

38. sknuth_Permutation with N = 1, n = 5 ∗ 107, r = 15, t = 10.

39. sknuth_CollisionPermut with N = 5, n = 107, r = 0, t = 13.

40. sknuth_CollisionPermut with N = 5, n = 107, r = 15, t = 13.

41. sknuth_MaxOft with N = 10, n = 107, r = 0, d = 105, t = 5.

42. sknuth_MaxOft with N = 5, n = 107, r = 0, d = 105, t = 10.

43. sknuth_MaxOft with N = 1, n = 107, r = 0, d = 105, t = 20.

44. sknuth_MaxOft with N = 1, n = 107, r = 0, d = 105, t = 30.

45. svaria_SampleProd with N = 1, n = 107, r = 0, t = 10.

46. svaria_SampleProd with N = 1, n = 107, r = 0, t = 30.

47. svaria_SampleMean with N = 107, n = 20, r = 0.
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48. svaria_SampleCorr with N = 1, n = 5 ∗ 108, r = 0, k = 1.

49. svaria_AppearanceSpacings with N = 1, Q = 107, K = 4 ∗ 108, r = 0, s = 30,
L = 15.

50. svaria_AppearanceSpacings with N = 1, Q = 107, K = 108, r = 20, s = 10, L = 15.

51. svaria_WeightDistrib with N = 1, n = 2 ∗ 106, r = 0, k = 256, Alpha = 0, Beta
= 1/8.

52. svaria_WeightDistrib with N = 1, n = 2 ∗ 106, r = 8, k = 256, Alpha = 0, Beta
= 1/8.

53. svaria_WeightDistrib with N = 1, n = 2 ∗ 106, r = 16, k = 256, Alpha = 0, Beta
= 1/8.

54. svaria_WeightDistrib with N = 1, n = 2 ∗ 106, r = 24, k = 256, Alpha = 0, Beta
= 1/8.

55. svaria_SumCollector with N = 1, n = 2 ∗ 107, r = 0, g = 10.

56. smarsa_MatrixRank with N = 1, n = 106, r = 0, s = 30, L = k = 60.

57. smarsa_MatrixRank with N = 1, n = 106, r = 20, s = 10, L = k = 60.

58. smarsa_MatrixRank with N = 1, n = 50000, r = 0, s = 30, L = k = 300.

59. smarsa_MatrixRank with N = 1, n = 50000, r = 20, s = 10, L = k = 300.

60. smarsa_MatrixRank with N = 1, n = 2000, r = 0, s = 30, L = k = 1200.

61. smarsa_MatrixRank with N = 1, n = 2000, r = 20, s = 10, L = k = 1200.

62. smarsa_Savir2 with N = 1, n = 2 ∗ 107, r = 0, m = 220, t = 30.

63. smarsa_GCD with N = 1, n = 108, r = 0, s = 30.

64. smarsa_GCD with N = 1, n = 4 ∗ 107, r = 10, s = 20.

65. swalk_RandomWalk1 with N = 1, n = 5 ∗ 107, r = 0, s = 30, L0 = L1 = 90.

66. swalk_RandomWalk1 with N = 1, n = 107, r = 20, s = 10, L0 = L1 = 90.

67. swalk_RandomWalk1 with N = 1, n = 5 ∗ 106, r = 0, s = 30, L0 = L1 = 1000.

68. swalk_RandomWalk1 with N = 1, n = 106, r = 20, s = 10, L0 = L1 = 1000.

69. swalk_RandomWalk1 with N = 1, n = 5 ∗ 105, r = 0, s = 30, L0 = L1 = 10000.

70. swalk_RandomWalk1 with N = 1, n = 105, r = 20, s = 10, L0 = L1 = 10000.

71. scomp_LinearComp with N = 1, n = 120000, r = 0, s = 1.
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72. scomp_LinearComp with N = 1, n = 120000, r = 29, s = 1.

73. scomp_LempelZiv with N = 10, k = 25, r = 0, s = 30.

74. sspectral_Fourier3 with N = 50000, k = 14, r = 0, s = 30.

75. sspectral_Fourier3 with N = 50000, k = 14, r = 20, s = 10.

76. sstring_LongestHeadRun with N = 1, n = 1000, r = 0, s = 30, L = 107.

77. sstring_LongestHeadRun with N = 1, n = 300, r = 20, s = 10, L = 107.

78. sstring_PeriodsInStrings with N = 1, n = 3 ∗ 108, r = 0, s = 30.

79. sstring_PeriodsInStrings with N = 1, n = 3 ∗ 108, r = 15, s = 15.

80. sstring_HammingWeight2 with N = 100, n = 108, r = 0, s = 30, L = 106.

81. sstring_HammingWeight2 with N = 30, n = 108, r = 20, s = 10, L = 106.

82. sstring_HammingCorr with N = 1, n = 5 ∗ 108, r = 0, s = 30, L = 30.

83. sstring_HammingCorr with N = 1, n = 5 ∗ 107, r = 0, s = 30, L = 300.

84. sstring_HammingCorr with N = 1, n = 107, r = 0, s = 30, L = 1200.

85. sstring_HammingIndep with N = 1, n = 3 ∗ 108, r = 0, s = 30, L = 30, d = 0.

86. sstring_HammingIndep with N = 1, n = 108, r = 20, s = 10, L = 30, d = 0.

87. sstring_HammingIndep with N = 1, n = 3 ∗ 107, r = 0, s = 30, L = 300, d = 0.

88. sstring_HammingIndep with N = 1, n = 107, r = 20, s = 10, L = 300, d = 0.

89. sstring_HammingIndep with N = 1, n = 107, r = 0, s = 30, L = 1200, d = 0.

90. sstring_HammingIndep with N = 1, n = 106, r = 20, s = 10, L = 1200, d = 0.

91. sstring_Run with N = 1, n = 109, r = 0, s = 30.

92. sstring_Run with N = 1, n = 109, r = 20, s = 10.

93. sstring_AutoCor with N = 10, n = 109, r = 0, s = 30, d = 1.

94. sstring_AutoCor with N = 5, n = 109, r = 20, s = 10, d = 1.

95. sstring_AutoCor with N = 10, n = 109, r = 0, s = 30, d = 30.

96. sstring_AutoCor with N = 5, n = 109, r = 20, s = 10, d = 10.
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void bbattery_RepeatCrush (unif01_Gen *gen, int rep[]);

Similar to bbattery_RepeatSmallCrush above but applied on Crush.

void bbattery_BigCrush (unif01_Gen *gen);

Applies the battery BigCrush, a suite of very stringent statistical tests, to the generator gen.
Some of these tests assume that gen returns at least 30 bits of resolution; if that is not the
case, then the generator will certainly fail these particular tests. One test requires 31 bits of
resolution: the BirthdaySpacings test with t = 2. On a PC with an AMD Athlon 64 Processor
4000+ of clock speed 2400 MHz running with Linux, BigCrush will take around 8 hours of CPU
time. BigCrush uses close to 238 random numbers. The following tests are applied:

1. smarsa_SerialOver with N = 1, n = 109, r = 0, d = 28, t = 3.

2. smarsa_SerialOver with N = 1, n = 109, r = 22, d = 28, t = 3.

3. smarsa_CollisionOver with N = 30, n = 2 ∗ 107, r = 0, d = 221, t = 2.

4. smarsa_CollisionOver with N = 30, n = 2 ∗ 107, r = 9, d = 221, t = 2.

5. smarsa_CollisionOver with N = 30, n = 2 ∗ 107, r = 0, d = 214, t = 3.

6. smarsa_CollisionOver with N = 30, n = 2 ∗ 107, r = 16, d = 214, t = 3.

7. smarsa_CollisionOver with N = 30, n = 2 ∗ 107, r = 0, d = 64, t = 7.

8. smarsa_CollisionOver with N = 30, n = 2 ∗ 107, r = 24, d = 64, t = 7.

9. smarsa_CollisionOver with N = 30, n = 2 ∗ 107, r = 0, d = 8, t = 14.

10. smarsa_CollisionOver with N = 30, n = 2 ∗ 107, r = 27, d = 8, t = 14.

11. smarsa_CollisionOver with N = 30, n = 2 ∗ 107, r = 0, d = 4, t = 21.

12. smarsa_CollisionOver with N = 30, n = 2 ∗ 107, r = 28, d = 4, t = 21.

13. smarsa_BirthdaySpacings with N = 100, n = 107, r = 0, d = 231, t = 2, p = 1.

14. smarsa_BirthdaySpacings with N = 20, n = 2 ∗ 107, r = 0, d = 221, t = 3, p = 1.

15. smarsa_BirthdaySpacings with N = 20, n = 3 ∗ 107, r = 14, d = 216, t = 4, p = 1.

16. smarsa_BirthdaySpacings with N = 20, n = 2 ∗ 107, r = 0, d = 29, t = 7, p = 1.

17. smarsa_BirthdaySpacings with N = 20, n = 2 ∗ 107, r = 7, d = 29, t = 7, p = 1.

18. smarsa_BirthdaySpacings with N = 20, n = 3 ∗ 107, r = 14, d = 28, t = 8, p = 1.
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19. smarsa_BirthdaySpacings with N = 20, n = 3 ∗ 107, r = 22, d = 28, t = 8, p = 1.

20. smarsa_BirthdaySpacings with N = 20, n = 3 ∗ 107, r = 0, d = 24, t = 16, p = 1.

21. smarsa_BirthdaySpacings with N = 20, n = 3 ∗ 107, r = 26, d = 24, t = 16, p = 1.

22. snpair_ClosePairs with N = 30, n = 6 ∗ 106, r = 0, t = 3, p = 0, m = 30.

23. snpair_ClosePairs with N = 20, n = 4 ∗ 106, r = 0, t = 5, p = 0, m = 30.

24. snpair_ClosePairs with N = 10, n = 3 ∗ 106, r = 0, t = 9, p = 0, m = 30.

25. snpair_ClosePairs with N = 5, n = 2 ∗ 106, r = 0, t = 16, p = 0, m = 30.

26. sknuth_SimpPoker with N = 1, n = 4 ∗ 108, r = 0, d = 8, k = 8.

27. sknuth_SimpPoker with N = 1, n = 4 ∗ 108, r = 27, d = 8, k = 8.

28. sknuth_SimpPoker with N = 1, n = 108, r = 0, d = 32, k = 32.

29. sknuth_SimpPoker with N = 1, n = 108, r = 25, d = 32, k = 32.

30. sknuth_CouponCollector with N = 1, n = 2 ∗ 108, r = 0, d = 8.

31. sknuth_CouponCollector with N = 1, n = 2 ∗ 108, r = 10, d = 8.

32. sknuth_CouponCollector with N = 1, n = 2 ∗ 108, r = 20, d = 8.

33. sknuth_CouponCollector with N = 1, n = 2 ∗ 108, r = 27, d = 8.

34. sknuth_Gap with N = 1, n = 5 ∗ 108, r = 0, Alpha = 0, Beta = 1/16.

35. sknuth_Gap with N = 1, n = 3 ∗ 108, r = 25, Alpha = 0, Beta = 1/32.

36. sknuth_Gap with N = 1, n = 108, r = 0, Alpha = 0, Beta = 1/128.

37. sknuth_Gap with N = 1, n = 107, r = 20, Alpha = 0, Beta = 1/1024.

38. sknuth_Run with N = 5, n = 109, r = 0, Up = FALSE.

39. sknuth_Run with N = 5, n = 109, r = 15, Up = TRUE.

40. sknuth_Permutation with N = 1, n = 109, r = 0, t = 3.

41. sknuth_Permutation with N = 1, n = 109, r = 0, t = 5.

42. sknuth_Permutation with N = 1, n = 5 ∗ 108, r = 0, t = 7.

43. sknuth_Permutation with N = 1, n = 5 ∗ 108, r = 10, t = 10.

44. sknuth_CollisionPermut with N = 20, n = 2 ∗ 107, r = 0, t = 14.

45. sknuth_CollisionPermut with N = 20, n = 2 ∗ 107, r = 10, t = 14.
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46. sknuth_MaxOft with N = 40, n = 107, r = 0, d = 105, t = 8.

47. sknuth_MaxOft with N = 30, n = 107, r = 0, d = 105, t = 16.

48. sknuth_MaxOft with N = 20, n = 107, r = 0, d = 105, t = 24.

49. sknuth_MaxOft with N = 20, n = 107, r = 0, d = 105, t = 32.

50. svaria_SampleProd with N = 40, n = 107, r = 0, t = 8.

51. svaria_SampleProd with N = 20, n = 107, r = 0, t = 16.

52. svaria_SampleProd with N = 20, n = 107, r = 0, t = 24.

53. svaria_SampleMean with N = 2 ∗ 107, n = 30, r = 0.

54. svaria_SampleMean with N = 2 ∗ 107, n = 30, r = 10.

55. svaria_SampleCorr with N = 1, n = 2 ∗ 109, r = 0, k = 1.

56. svaria_SampleCorr with N = 1, n = 2 ∗ 109, r = 0, k = 2.

57. svaria_AppearanceSpacings with N = 1, Q = 107, K = 109, r = 0, s = 3, L = 15.

58. svaria_AppearanceSpacings with N = 1, Q = 107, K = 109, r = 27, s = 3, L = 15.

59. svaria_WeightDistrib with N = 1, n = 2 ∗ 107, r = 0, k = 256, Alpha = 0, Beta
= 1/4.

60. svaria_WeightDistrib with N = 1, n = 2 ∗ 107, r = 20, k = 256, Alpha = 0, Beta
= 1/4.

61. svaria_WeightDistrib with N = 1, n = 2 ∗ 107, r = 28, k = 256, Alpha = 0, Beta
= 1/4.

62. svaria_WeightDistrib with N = 1, n = 2 ∗ 107, r = 0, k = 256, Alpha = 0, Beta
= 1/16.

63. svaria_WeightDistrib with N = 1, n = 2 ∗ 107, r = 10, k = 256, Alpha = 0, Beta
= 1/16.

64. svaria_WeightDistrib with N = 1, n = 2 ∗ 107, r = 26, k = 256, Alpha = 0, Beta
= 1/16.

65. svaria_SumCollector with N = 1, n = 5 ∗ 108, r = 0, g = 10.

66. smarsa_MatrixRank with N = 10, n = 106, r = 0, s = 5, L = k = 30.

67. smarsa_MatrixRank with N = 10, n = 106, r = 25, s = 5, L = k = 30.

68. smarsa_MatrixRank with N = 1, n = 5000, r = 0, s = 4, L = k = 1000.
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69. smarsa_MatrixRank with N = 1, n = 5000, r = 26, s = 4, L = k = 1000.

70. smarsa_MatrixRank with N = 1, n = 80, r = 15, s = 15, L = k = 5000.

71. smarsa_MatrixRank with N = 1, n = 80, r = 0, s = 30, L = k = 5000.

72. smarsa_Savir2 with N = 10, n = 107, r = 10, m = 220, t = 30.

73. smarsa_GCD with N = 10, n = 5 ∗ 107, r = 0, s = 30.

74. swalk_RandomWalk1 with N = 1, n = 108, r = 0, s = 5, L0 = L1 = 50.

75. swalk_RandomWalk1 with N = 1, n = 108, r = 25, s = 5, L0 = L1 = 50.

76. swalk_RandomWalk1 with N = 1, n = 107, r = 0, s = 10, L0 = L1 = 1000.

77. swalk_RandomWalk1 with N = 1, n = 107, r = 20, s = 10, L0 = L1 = 1000.

78. swalk_RandomWalk1 with N = 1, n = 106, r = 0, s = 15, L0 = L1 = 10000.

79. swalk_RandomWalk1 with N = 1, n = 106, r = 15, s = 15, L0 = L1 = 10000.

80. scomp_LinearComp with N = 1, n = 400000, r = 0, s = 1.

81. scomp_LinearComp with N = 1, n = 400000, r = 29, s = 1.

82. scomp_LempelZiv with N = 10, k = 27, r = 0, s = 30.

83. scomp_LempelZiv with N = 10, k = 27, r = 15, s = 15.

84. sspectral_Fourier3 with N = 100000, r = 0, s = 3, k = 14.

85. sspectral_Fourier3 with N = 100000, r = 27, s = 3, k = 14.

86. sstring_LongestHeadRun with N = 1, n = 1000, r = 0, s = 3, L = 107.

87. sstring_LongestHeadRun with N = 1, n = 1000, r = 27, s = 3, L = 107.

88. sstring_PeriodsInStrings with N = 10, n = 5 ∗ 108, r = 0, s = 10.

89. sstring_PeriodsInStrings with N = 10, n = 5 ∗ 108, r = 20, s = 10.

90. sstring_HammingWeight2 with N = 10, n = 109, r = 0, s = 3, L = 106.

91. sstring_HammingWeight2 with N = 10, n = 109, r = 27, s = 3, L = 106.

92. sstring_HammingCorr with N = 1, n = 109, r = 10, s = 10, L = 30.

93. sstring_HammingCorr with N = 1, n = 108, r = 10, s = 10, L = 300.

94. sstring_HammingCorr with N = 1, n = 108, r = 10, s = 10, L = 1200.

95. sstring_HammingIndep with N = 10, n = 3 ∗ 107, r = 0, s = 3, L = 30, d = 0.
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96. sstring_HammingIndep with N = 10, n = 3 ∗ 107, r = 27, s = 3, L = 30, d = 0.

97. sstring_HammingIndep with N = 1, n = 3 ∗ 107, r = 0, s = 4, L = 300, d = 0.

98. sstring_HammingIndep with N = 1, n = 3 ∗ 107, r = 26, s = 4, L = 300, d = 0.

99. sstring_HammingIndep with N = 1, n = 107, r = 0, s = 5, L = 1200, d = 0.

100. sstring_HammingIndep with N = 1, n = 107, r = 25, s = 5, L = 1200, d = 0.

101. sstring_Run with N = 1, n = 2 ∗ 109, r = 0, s = 3.

102. sstring_Run with N = 1, n = 2 ∗ 109, r = 27, s = 3.

103. sstring_AutoCor with N = 10, n = 109, r = 0, s = 3, d = 1.

104. sstring_AutoCor with N = 10, n = 109, r = 0, s = 3, d = 3.

105. sstring_AutoCor with N = 10, n = 109, r = 27, s = 3, d = 1.

106. sstring_AutoCor with N = 10, n = 109, r = 27, s = 3, d = 3.

void bbattery_RepeatBigCrush (unif01_Gen *gen, int rep[]);

Similar to bbattery_RepeatSmallCrush above but applied on BigCrush.

void bbattery_Rabbit (unif01_Gen *gen, double nb);

Applies the Rabbit battery of tests to the generator gen using at most nb bits for each test.
See the description of the tests in bbattery_RabbitFile.

void bbattery_RabbitFile (char *filename, double nb);

Applies the Rabbit battery of tests to the first nb bits (or less, if nb is too large) of the binary file
filename. For each test, the file is reset and the test is applied to the bit stream starting at the
beginning of the file. The bits themselves are processed in nearly all the tests as blocks of 32 bits
(unsigned integers); the two exceptions are svaria_AppearanceSpacings, which uses blocks of
30 bits (and discards the last 2 bits out of each block of 32), and sstring_PeriodsInStrings
which uses blocks of 31 bits (and discards 1 bit out of 32). The parameters of each test are
chosen automatically as a function of nb, in order to make the test reasonably sensitive. On a
PC with an Athlon processor of clock speed 1733 MHz running under Linux, Rabbit will take
about 5 seconds to test a stream of 220 bits, 90 seconds to test a stream of 225 bits, and 28
minutes to test a stream of 230 bits. Restriction: nb ≥ 500.

1. smultin_MultinomialBitsOver

2. snpair_ClosePairsBitMatch in t = 2 dimensions.

152



3. snpair_ClosePairsBitMatch in t = 4 dimensions.

4. svaria_AppearanceSpacings

5. scomp_LinearComp

6. scomp_LempelZiv

7. sspectral_Fourier1

8. sspectral_Fourier3

9. sstring_LongestHeadRun

10. sstring_PeriodsInStrings

11. sstring_HammingWeight with blocks of L = 32 bits.

12. sstring_HammingCorr with blocks of L = 32 bits.

13. sstring_HammingCorr with blocks of L = 64 bits.

14. sstring_HammingCorr with blocks of L = 128 bits.

15. sstring_HammingIndep with blocks of L = 16 bits.

16. sstring_HammingIndep with blocks of L = 32 bits.

17. sstring_HammingIndep with blocks of L = 64 bits.

18. sstring_AutoCor with a lag d = 1.

19. sstring_AutoCor with a lag d = 2.

20. sstring_Run

21. smarsa_MatrixRank with 32× 32 matrices.

22. smarsa_MatrixRank with 320× 320 matrices.

23. smarsa_MatrixRank with 1024× 1024 matrices.

24. swalk_RandomWalk1 with walks of length L = 128.

25. swalk_RandomWalk1 with walks of length L = 1024.

26. swalk_RandomWalk1 with walks of length L = 10016.
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void bbattery_RepeatRabbit (unif01_Gen *gen, double nb, int rep[]);

Similar to bbattery_RepeatSmallCrush above but applied on Rabbit.

void bbattery_Alphabit (unif01_Gen *gen, double nb, int r, int s);

Applies the Alphabit battery of tests to the generator gen using at most nb bits for each test.
The bits themselves are processed as blocks of 32 bits (unsigned integers). For each block of 32
bits, the r most significant bits are dropped, and the test is applied on the s following bits. If one
wants to test all bits of the stream, one should set r = 0 and s = 32. If one wants to test only 1
bit out of 32, one should set s = 1. See the description of the tests in bbattery_AlphabitFile.

void bbattery_AlphabitFile (char *filename, double nb);

Applies the Alphabit battery of tests to the first nb bits (or less, if nb is too large) of the binary
file filename. Unlike the bbattery_Alphabit function above, for each test, the file is rewound
and the test is applied to the bit stream starting at the beginning of the file. On a PC with
an Athlon processor of clock speed 1733 MHz running under Linux, Alphabit takes about 4.2
seconds to test a file of 225 bits, and 2.3 minutes to test a file of 230 bits.

Alphabit and AlphabitFile have been designed primarily to test hardware random bits gener-
ators. The four MultinomialBitsOver tests should detect correlations between successive bits
by applying a SerialOver test to overlapping blocks of 2, 4, 8 and 16 bits. The Hamming tests
should detect correlations between the successive bits of overlapping blocks of 16 and 32 bits,
and the RandomWalk tests consider blocks of 64 and 320 bits.

1. smultin_MultinomialBitsOver with L = 2.

2. smultin_MultinomialBitsOver with L = 4.

3. smultin_MultinomialBitsOver with L = 8.

4. smultin_MultinomialBitsOver with L = 16.

5. sstring_HammingIndep with blocks of L = 16 bits.

6. sstring_HammingIndep with blocks of L = 32 bits.

7. sstring_HammingCorr with blocks of L = 32 bits.

8. swalk_RandomWalk1 with walks of length L = 64.

9. swalk_RandomWalk1 with walks of length L = 320.
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void bbattery_RepeatAlphabit (unif01_Gen *gen, double nb, int r, int s,
int rep[]);

Similar to bbattery_RepeatSmallCrush above but applied on Alphabit.

void bbattery_BlockAlphabit (unif01_Gen *gen, double nb, int r, int s);
void bbattery_BlockAlphabitFile (char *filename, double nb);

Apply the Alphabit battery of tests repeatedly to the generator gen or to the binary file
filename after reordering the bits as described in the filter unif01_CreateBitBlockGen.
Alphabit will be applied for the different values of w ∈ {1, 2, 4, 8, 16, 32}. If s < 32, only
values of w ≤ s will be used. Each test uses at most nb bits. See the description of the tests in
bbattery_AlphabitFile.

void bbattery_RepeatBlockAlphabit (unif01_Gen *gen, double nb, int r, int s,
int rep[], int w);

Similar to bbattery_RepeatSmallCrush above but applied on BlockAlphabit. The parameter
w is the one described in bbattery_BlockAlphabit. Restrictions: w ∈ {1, 2, 4, 8, 16, 32} and
w ≤ s.

Other Tests Suites

void bbattery_pseudoDIEHARD (unif01_Gen *gen);

Applies the battery pseudoDIEHARD, which implements most of the tests in the popular battery
DIEHARD [106] or in some cases, close approximations of them. We do not recommend this
battery as it is not very stringent (many mediocre generators pass it); it is included here only for
convenience to the user. The DIEHARD tests and the corresponding tests in pseudoDIEHARD
are:

1. The Birthday Spacings test. This corresponds to smarsa_BirthdaySpacings with
n = 512, d = 224, t = 1 and r = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 successively. The test with each
value of r is repeated 500 times and a chi-square test is then applied.

2. The Overlapping 5-Permutation test. This test is not implemented in TestU01.

3. The Binary Rank Tests for Matrices. This corresponds to smarsa_MatrixRank.

4. The Bitstream test. Closely related to smultin_MultinomialBitsOver with Delta

= −1, n = 221, L = 20.

5. The OPSO test. This corresponds to smarsa_CollisionOver with n = 221, d = 1024,
t = 2 and all values of r from 0 to 22.

6. The OQSO test. This corresponds to smarsa_CollisionOver with n = 221, d = 32,
t = 4 and all values of r from 0 to 27.
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7. The DNA test. This corresponds to smarsa_CollisionOver with n = 221, d = 4,
t = 10 and all values of r from 0 to 30.

8. The Count-the-1’s test is not implemented in TestU01. It is a 5-dimensional over-
lapping version of sstring_HammingIndep.

9. The Parking Lot test is not implemented in TestU01.

10. The Minimum Distance test. Closely related to snpair_ClosePairs with N = 100,
n = 8000, t = 2, p = 2, m = 1.

11. The 3-D Spheres test. Closely related to snpair_ClosePairs with N = 20, n = 4000,
t = 3, p = 2, m = 1.

12. The Squeeze test. Closely related to smarsa_Savir2.

13. The Overlapping Sums test is not implemented in TestU01.

14. The Runs test. This corresponds to sknuth_Run.

15. The Craps test is not implemented in TestU01.

The NIST test suite The NIST (National Institute of Standards and Technology) of the
U.S. federal government has proposed a statistical test suite [147] for use in the evaluation of
the randomness of bitstreams produced by cryptographic random number generators. The
test parameters are not predetermined. The NIST tests and the equivalent tests in TestU01
are:

1. The Monobit test. This corresponds to sstring_HammingWeight2 with L = n.

2. The Frequency test within a Block. Corresponds to sstring_HammingWeight2.

3. The Runs test. Is implemented as sstring_Run.

4. The test for the Longest Run of Ones in a Block. Is implemented as the test
sstring_LongestHeadRun.

5. The Binary Matrix rank test. Is implemented as smarsa_MatrixRank.

6. The Discrete Fourier Transform test. Is implemented as sspectral_Fourier1.

7. The Non-overlapping Template Matching test. Is implemented as the test
smarsa_MonkeyBits.

8. The Overlapping Template Matching test. This test does not exist as such in
TestU01, but a similar and more powerful test is smultin_MultinomialBitsOver.
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9. Maurer’s Universal Statistical test. Corresponds to svaria_AppearanceSpacings.

10. The Lempel-Ziv Compression test. Is implemented as scomp_LempelZiv.

11. The Linear Complexity test. Is implemented as part of scomp_LinearComp.

12. The Serial test. Corresponds to smultin_MultinomialBitsOver with Delta = 1.

13. The Approximate Entropy test. Corresponds to smultin_MultinomialBitsOver

with Delta = 0, and to sentrop_EntropyDiscOver or sentrop_EntropyDiscOver2.

14. The Cumulative Sums test. Closely related to the M statistic in swalk_RandomWalk1.

15. The Random Excursions test. This test does not exist in TestU01, but closely
related tests are in swalk_RandomWalk1.

16. The Random Excursions Variant test. This test does not exist in TestU01, but a
closely related test is based on the R statistic in swalk_RandomWalk1.

void bbattery_FIPS_140_2 (unif01_Gen *gen);
void bbattery_FIPS_140_2File (char *filename);

These functions apply the four tests described in the NIST document FIPS PUB 140-2, Security
Requirements for Cryptographic Modules, page 35, with exactly the same parameters (see the
WEB page at http://csrc.nist.gov/rng/rng6_3.html). They report the values of the test
statistics and their p-values (except for the runs test) and indicate which values fall outside the
intervals specified by FIPS-140-2. The first function applies the tests on a generator gen, and
the second applies them on the file of bits filename. First, 20000 bits are generated and put
in an array, then the tests are applied upon these. The tests applied are:

1. The Monobit test. This corresponds to smultin_MultinomialBits with s = 32,
L = 1, n = 20000.

2. The “poker” test, which is in fact equivalent to smultin_MultinomialBits with
s = 32, L = 4, n = 5000.

3. The Runs test, which is related to sstring_Run.

4. The test for the Longest Run of Ones in a Block, which is implemented as
sstring_LongestHeadRun.
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Chapter 5

FAMILIES OF GENERATORS

The tools described in this chapter are convenient for examining systematically the inter-
action between specific tests and certain families of RNGs. The framework is as follows.
For each family, an RNG of period length near 2i has been selected, on the basis on some
theoretical criteria that depend on the family, for all integers i in some interval (from 10
to 40, for example). The parameters of the pre-selected instances are stored in text files in
directory param.

Typically, for a given RNG that fails a test, when the sample size of the test is in-
creased, the p-value would remain “reasonable” for a while, say for n up to some threshold
n0 (roughly), and will then converges to 0 or 1 exponentially fast as a function of n. It is
interesting to examine the relationship between n0 and i. The idea is to fit a crude regression
model of n0 as a function of i. For example, one may consider a model of the form

log2 n0 = γi + ν + δ, (5.1)

where γ and ν are constants and δ represents the noise. The result may give an idea of what
period length ρ of the RNG is required, within a given family, to be safe with respect to the
test that is considered, for a given computer budget.

This methodology has been applied in [48, 90, 87, 93, 96, 89], using an earlier version of
the present library, and gave surprisingly good results in many cases. For full-period LCGs
with good spectral test behavior, for example, the relationships n0 ≈ 16 ρ1/2 for the collision
test and n0 ≈ 16 ρ1/3 for the birthday spacings test have been obtained. This means that no
LCG is safe with respect to these particular tests unless its period length ρ is so large that
generating ρ1/3 numbers is practically unfeasible. A period length of 248 or less, for example,
does not satisfy this requirement.

Common parameters.

The first argument of each testing function in the f modules is the family fam of random
number generators to be tested (see module ffam for details). That family must be created
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by calling the appropriate function in the module fcong or ffsr, and deleted when no longer
needed.

The second argument (the third one in the fmultin module) of each testing function is
a structure res that can keep the tables of p-values and other results (see module fres for
details). This is useful if one wishes to do something else with the tables of results after all
tests are ended. If one does not want to post-process or use the tables of results after a f

test, it suffices to set the res argument to the NULL pointer. Then, the structure is created
and deleted automatically inside the testing function. In any case, the tables of results will
be printed automatically on standard output.

The third argument (the fourth one in the fmultin module) of each testing function is
a structure cho that allows the user to choose varying sample sizes and other parameters of
the tests as a function of the generators lsize and the fixed parameters (see module fcho for
details).

For each of these three arguments (except possibly for res as explained above), one must
call the appropriate Create function before using them, and call the corresponding Delete

function when they are no longer needed.

The last four arguments of each testing function are the integers Nr, j1, j2 and jstep.
The test functions will be applied on the first Nr generators of the family fam. If there are
less than Nr generators in the family, then Nr will be reset to the number of generators in
the tested family. For each of the generator, tests will be applied with varying sample sizes
determined by the parameter j for j varying from j1 to j2 by step of jstep.

An example: The collision test applied to a family of LCG’s.

For a concrete illustration, Figure 5.1 shows a program applying the collision test (see
tests sknuth_Collision and smultin_Multinomial) systematically to a family of LCGs.
First, the call to fcong_CreateLCG creates the family of generators to which the tests are
applied; i.e., each generator instance has its parameters predefined in the file LCGGood.par.
These “good LCGs” have prime modulus m (the largest prime less than 2i), full period
length m − 1, and perform well in the spectral test for up to dimension 8. They are taken
from [81] and are listed in Table 5.1 for 10 ≤ i ≤ 30.

The following instruction in the program, smultin_CreateParam with NbDelta = 1 and
ValDelta[0] = -1, specifies that only the collision test will be applied. The par param-
eter in the test could be replaced by the NULL pointer, in which case default values would
be used and it would not be necessary to create a par structure. The next instruction
fmultin_CreateRes creates a structure to hold the results of the test. If one does not want
to postprocess the results after all the tests are ended, one may also pass a NULL pointer as
argument res to the test, in which case it would not be necessary to create a res structure
either. The instruction fcho_CreateSampleSize specifies that the sample size n (the num-
ber of points) will be chosen as n = 2i/2+j. The next instruction fmultin_CreatePer_DT

says that the number of cells k will be equal to the period length of the generator tested,
and that the relation between k, the one-dimensional interval d, and the dimension t (here
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Table 5.1: Some good LCGs according to the spectral test in up to dimension 8.

m a

210 − 3 = 1021 65
211 − 9 = 2039 995
212 − 3 = 4093 209
213 − 1 = 8191 884
214 − 3 = 16381 572
215 − 19 = 32749 219
216 − 15 = 65521 17364
217 − 1 = 131071 43165
218 − 5 = 262139 92717
219 − 1 = 524287 283741
220 − 3 = 1048573 380985
221 − 9 = 2097143 360889
222 − 3 = 4194301 914334
223 − 15 = 8388593 653276
224 − 3 = 16777213 6423135
225 − 39 = 33554393 25907312
226 − 5 = 67108859 26590841
227 − 39 = 134217689 45576512
228 − 57 = 268435399 31792125
229 − 3 = 536870909 16538103
230 − 35 = 1073741789 5122456
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#include "fcong.h"
#include "ffam.h"
#include "fcho.h"
#include "fmultin.h"
#include "smultin.h"

int main (void)
{

int NbDelta = 1;
double ValDelta[] = { -1 };
int t = 2;
ffam_Fam *fam;
smultin_Param *par;
fmultin_Res *res;
fcho_Cho *chon;
fcho_Cho *chod;
fcho_Cho2 *cho;

fam = fcong_CreateLCG ("LCGGood.par", 10, 30, 1);
par = smultin_CreateParam (NbDelta, ValDelta, smultin_GenerCellSerial, 2);
res = fmultin_CreateRes (par);
chon = fcho_CreateSampleSize (0.5, 1, 0, NULL, "n");
chod = fmultin_CreatePer_DT (t, 1);
cho = fcho_CreateCho2 (chon, chod);

fmultin_Serial1 (fam, par, res, cho, 1, 0, t, TRUE, 21, 1, 5, 1);

fcho_DeleteCho2 (cho);
fmultin_DeletePer (chod);
fcho_DeleteSampleSize (chon);
fmultin_DeleteRes (res);
smultin_DeleteParam (par);
fcong_DeleteLCG (fam);
return 0;

}

Figure 5.1: Applying the collision test to a family of LCGs.
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2) is given by k = dt. Then these two “choose” functions are set in the structure cho that
will be passed as argument to the test. The call fmultin_Serial1 launches the series of
collision tests, with the parameters N = 1, r = 0, t = 2, Sparse = TRUE. LCGs with period
lengths near 2i will be tested for i = 10, 11, . . . , 30, each with sample size n = 2i/2+j for
j = 1, 2, 3, 4, 5. Finally, all the created structures are deleted to free the memory used by
each of them.

Table 5.2: Expected number of collisions and observed number of collisions.

LSize j = 1 j = 2 j = 3 j = 4 j = 5
10 1.93 2 7.62 2 29.39 11 108.94 58 376.52 570
11 1.95 1 7.81 0 30.44 6 115.16 17 413.38 474
12 1.96 0 7.81 2 30.65 13 117.87 44 436.20 216
13 2.00 0 7.95 2 31.37 13 121.97 55 461.02 211
14 1.98 1 7.90 5 31.31 11 122.77 52 471.77 191
15 1.99 1 7.93 1 31.51 7 124.27 41 483.04 132
16 1.99 1 7.95 0 31.65 5 125.35 20 491.26 75
17 1.99 0 7.97 1 31.75 11 126.11 23 497.29 101
18 2.00 0 7.98 4 31.83 15 126.66 45 501.47 214
19 2.00 0 7.98 1 31.88 3 127.07 19 504.60 61
20 2.00 0 7.99 0 31.91 4 127.33 14 506.69 74
21 2.00 0 7.99 1 31.94 12 127.55 48 508.33 178
22 2.00 0 7.99 3 31.96 14 127.66 59 509.34 220
23 2.00 0 8.00 0 31.97 5 127.78 16 510.21 45
24 2.00 0 8.00 0 31.98 1 127.83 15 510.67 37
25 2.00 1 8.00 4 31.99 8 127.91 44 511.16 142
26 2.00 2 8.00 1 31.99 7 127.92 24 511.33 71
27 2.00 1 8.00 1 31.99 7 127.94 38 511.55 152
28 2.00 0 8.00 3 31.99 17 127.96 41 511.67 193
29 2.00 1 8.00 0 32.00 0 127.98 8 511.78 25
30 2.00 0 8.00 3 32.00 10 127.98 29 511.83 189

Tables 5.2 and 5.3 give the results of this program. In Table 5.2, for each value of i and j,
the expected number of collisions is given on the left, and the observed number of collisions
on the right. We see that for j ≥ 3, the observed number of collisions is generally much too
small (there are exceptions at j = 5 and i = 10 and 11). The p-values written in Table 5.3
are those which fall outside the interval [0.01, 0.99], which may be called suspect p-values.
A p-value smaller than 10−300 is noted by ε. A p-value larger than 1− 10−15 is noted by −ε1

(p-values close to 1 are written as −p instead of 1−p). We see that for j ≥ 3, the p-values in
Table 5.3 are very close to 1. This means that the two-dimensional points produced by these
generators are too evenly distributed and the test starts detecting this when the sample size
reaches n0 ≈ 2i/2+3 ≈ 8

√
ρ. Very clear rejection occurs in all cases for j = 4, i.e., at sample

size n ≈ 16
√

ρ.
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Table 5.3: The p-values of the collision test for the good LCGs, for t = 2 and k ≈ 2i.

Total CPU time: 00:00:06.69

LSize j = 1 j = 2 j = 3 j = 4 j = 5
10 –1.0e–5 –1.1e–12 ε
11 –2.5e–4 –6.3e–9 –ε1 1.1e–6
12 –1.1e–4 –ε1 –ε1

13 –9.0e–5 –6.0e–14 –ε1

14 –1.5e–5 –9.4e–15 –ε1

15 –2.9e–3 –9.0e–8 –ε1 –ε1

16 –3.2e–4 –3.5e–9 –ε1 –ε1

17 –3.0e–3 –1.6e–5 –ε1 –ε1

18 –6.6e–4 –ε1 –ε1

19 –3.0e–3 –7.0e–11 –ε1 –ε1

20 –3.3e–4 –6.0e–10 –ε1 –ε1

21 –3.0e–3 –4.7e–5 –ε1 –ε1

22 –2.9e–4 –7.1e–12 –ε1

23 –3.3e–4 –4.1e–9 –ε1 –ε1

24 –3.3e–4 –4.1e–13 –ε1 –ε1

25 –4.5e–7 –ε1 –ε1

26 –3.0e–3 –1.1e–7 –ε1 –ε1

27 –3.0e–3 –1.1e–7 –ε1 –ε1

28 –2.8e–3 –ε1 –ε1

29 –3.4e–4 –1.3e–14 –ε1 –ε1

30 –5.6e–6 –ε1 –ε1
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Another example: The birthday spacings test applied to a family of LCG’s.

The next example in Figure 5.2 gives a program applying the birthday spacings test (see
smarsa_BirthdaySpacings) to a family of generators. First the family LCGPow2 is created
by calling function fcong_CreateLCGPow2. Each generator of the family has its parameters
predefined in file LCGPow2.par. These generators have been chosen such that their modulus
m is exactly equal to a power of 2, i.e. m = 2i for 10 ≤ i ≤ 30, and their multiplier
gives them a good structure according to the spectral test. The sample size of the test (the
number of points n) is then chosen (by calling fcho_CreateSampleSize) to follow the law
n = 2i/3+j, for generator of modulus m = 2i. The next instruction fmarsa_CreateBirthEC

indicates that, given N = 1 replication of the test and dimension t = 2, the number of
segments d on the interval [0, 1) will be chosen so that the expected number of collisions is
(approximately) equal to 1. These two “choose” functions are set in the structure cho by
the call fcho_CreateCho2 and will thus be passed as arguments to the tests. Then function
fmarsa_BirthdayS1 applies the birthday spacings test on the 21 selected generators of the
family, for 1 ≤ j ≤ 5 and with the other parameters determined by the above functions.
After all the tests are completed, the following Delete functions free the resources used by
the program.

#include "fcong.h"
#include "ffam.h"
#include "fcho.h"
#include "fmarsa.h"

int main (void)
{

ffam_Fam *fam;
fcho_Cho *chon;
fcho_Cho *chod;
fcho_Cho2 *cho;

fam = fcong_CreateLCGPow2 (NULL, 10, 30, 1);
chon = fcho_CreateSampleSize (1.0/3.0, 1, 0, NULL, "n");
chod = fmarsa_CreateBirthEC (1, 2, 1.0);
cho = fcho_CreateCho2 (chon, chod);
fmarsa_BirthdayS1 (fam, NULL, cho, 1, 0, 2, 1, 21, 1, 5, 1);
fcho_DeleteCho2 (cho);
fmarsa_DeleteBirthEC (chod);
fcho_DeleteSampleSize (chon);
fcong_DeleteLCGPow2 (fam);
return 0;

}

Figure 5.2: Applying the birthday spacings test to a family of LCGs.

Tables 5.4 and 5.5 give the results of this program. In Table 5.4, for each value of i and j,
the expected number of collisions is given on the left and the observed number of collisions
on the right. We see that for j ≥ 2, the observed number of collisions is much too large
and the more so as j increases. The right p-values written in Table 5.5 are those which fall
outside the interval [0.01, 0.99]. A p-value smaller than 10−300 is noted by ε. For j = 1, the
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number of collisions is close to the expected value and the corresponding p-values are in the
interval [0.01, 0.99]. The generators pass the test also for j ≤ 1. But for j ≥ 2, the p-values
in Table 5.5 becomes smaller as j increases. The tests signals catastrophic failures of the
generators already for j ≥ 3. This is because the two-dimensional points produced by these
generators are too evenly distributed and the test starts detecting this when the sample size
reaches n ≈ 2i/3+2. These are quite small sample sizes; for example, for the generator with
m = 230, the tests start to fail for n as small as 4096.

Table 5.4: Birthday spacings test: Expected and observed number of collisions for each i
and j.

LSize j = 1 j = 2 j = 3 j = 4 j = 5
10 — — 1.01 5 1.00 48 1.00 131 — —
11 — — 1.01 8 1.00 52 1.00 147 1.00 377
12 1.01 0 1.00 10 1.00 44 1.00 204 1.00 447
13 1.01 0 1.00 11 1.00 50 1.00 196 1.00 579
14 1.01 0 1.00 10 1.00 56 1.00 247 1.00 662
15 1.00 2 1.00 9 1.00 55 1.00 258 1.00 911
16 1.00 1 1.00 5 1.00 61 1.00 316 1.00 958
17 1.00 0 1.00 7 1.00 70 1.00 365 1.00 1172
18 1.00 1 1.00 10 1.00 73 1.00 385 1.00 1374
19 1.00 4 1.00 13 1.00 79 1.00 414 1.00 1600
20 1.00 0 1.00 7 1.00 72 1.00 449 1.00 1895
21 1.00 1 1.00 5 1.00 73 1.00 509 1.00 2176
22 1.00 4 1.00 8 1.00 78 1.00 505 1.00 2472
23 1.00 3 1.00 13 1.00 79 1.00 522 1.00 2797
24 1.00 1 1.00 16 1.00 59 1.00 580 1.00 3092
25 1.00 2 1.00 9 1.00 102 1.00 588 1.00 3392
26 1.00 0 1.00 10 1.00 79 1.00 629 1.00 3709
27 1.00 2 1.00 11 1.00 89 1.00 636 1.00 3915
28 1.00 1 1.00 8 1.00 83 1.00 691 1.00 4097
29 1.00 2 1.00 12 1.00 89 1.00 650 1.00 4500
30 1.00 3 1.00 16 1.00 80 1.00 649 1.00 4551
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Table 5.5: The right p-values P [Y ≥ y] of the BirthdaySpacings test for the LCGPow2s.

Total CPU time: 00:00:00.07

LSize j = 1 j = 2 j = 3 j = 4 j = 5
10 — 3.8e–3 3.7e–62 4.9e–223 —
11 — 1.1e–5 5.2e–69 2.2e–257 ε
12 1.1e–7 1.4e–55 ε ε
13 1.0e–8 1.3e–65 ε ε
14 1.1e–7 5.3e–76 ε ε
15 1.1e–6 3.0e–74 ε ε
16 3.7e–3 7.4e–85 ε ε
17 8.3e–5 3.2e–101 ε ε
18 1.1e–7 8.5e–107 ε ε
19 6.4e–11 4.2e–118 ε ε
20 8.3e–5 6.1e–105 ε ε
21 3.7e–3 8.3e–107 ε ε
22 1.0e–5 3.3e–116 ε ε
23 6.4e–11 4.2e–118 ε ε
24 1.9e–14 2.7e–81 ε ε
25 1.1e–6 3.9e–163 ε ε
26 1.1e–7 4.2e–118 ε ε
27 1.0e–8 2.3e–137 ε ε
28 1.0e–5 9.4e–126 ε ε
29 8.3e–10 2.3e–137 ε ε
30 1.9e–14 5.2e–120 ε ε
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ffam

This module provides generic tools used in testing whole families of generators. There
are many predefined families of generators of the same kind (see modules fcong and ffsr

for some examples); their defining parameters are in files kept in directory param of TestU01.
For each generator in a given family, we define a size (the period length) and a resolution.
We shall define the lsize of a generator as the (rounded) base-2 logarithm of the period
length. Resolution is a somewhat fuzzy notion. If we have a LCG with modulus m = 2b, say,
then each output number is a multiple of 2−b and we say we have b bits of resolution in the
output. More generally, if the number of different output values that can be produced by the
generator is n (not necessarily a power of 2), we say that the “resolution” is (approximately)
blog2 nc.

For the predefined families, each generator of the family has been chosen in such a way
that its period length (the number of possible states of the generator) is very close to a power
of 2. Thus, a given test may be applied with a variable sample size on generators of the same
kind whose size varies as successive powers of 2. One may then observe some interactions
between a test and the structure of the generators of a given kind, and this will appear as
regularities in the results. The user may also define his own family of generators.

#include "unif01.h"

Families of generators

The following structure is used in the f modules to keep a family of generators upon
which tests with variable sample sizes are applied. Such a structure must always be created,
directly or indirectly, before calling a testing function. Usually, this structure will be created
indirectly by one of the Create function in modules fcong and ffsr.

typedef struct {
unif01_Gen **Gen;
int *LSize;
int *Resol;
int Ng;
char *name;

} ffam_Fam;

Array element Gen[i] is a generator of the family, array element Resol[i] gives the (ap-
proximate) number of bits of resolution in the output values of generator Gen[i]. Array ele-
ment LSize[i] gives the base-2 logarithm of the approximate period length of Gen[i], i.e. if
LSize[i] = h, then Gen[i] has a period that is very close to 2h. There are Ng members in the
family (and the size of the above arrays is Ng), so their elements are numbered from 0 ≤ i ≤
Ng-1. The string name gives the name of the family.
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ffam_Fam * ffam_CreateFam (int Ng, char *name);

Creates and returns a structure to hold a family named name that can contains up to Ng
generators.

void ffam_DeleteFam (ffam_Fam *fam);

Frees the memory allocated to fam by ffam_CreateFam.

void ffam_PrintFam (ffam_Fam *fam);

Prints all the fields of the family fam.

void ffam_ReallocFam (ffam_Fam *fam, int Ng);

Reallocs memory to the three arrays of fam so that they can contain up to Ng elements.

ffam_Fam * ffam_CreateSingle (unif01_Gen *gen, int resol, int i1, int i2);

Creates and returns a structure to hold a family that can contains up to i2−i1 + 1 generators.
All members of the family will be the same generator gen of resolution resol. The generator
will imitate a family of generators of lsize in i1 ≤ lsize ≤ i2. This is useful, amongst other
things, to explore the domain of the approximation error in the distribution function of a test
with the help of a high quality generator, or to find out the behaviour of a given generator with
respect to a given test as the sample size increases.

void ffam_DeleteSingle (ffam_Fam *fam);

Frees the memory allocated to fam by ffam_CreateSingle.
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fcong

The functions in this module creates whole families of generators of the same kind (such
as LCGs, MRGs, inversive, cubic, . . . ), based on recurrences modulo some integer m, of
different period lengths (the number of states) near powers of 2. Each Create function will
return a family of generators whose lsize varies from i1 to i2 by step of istep, and whose
parameters are taken from a file. The lsize of a generator is defined as the (rounded) base-2
logarithm of its period length.

There are predefined families of each kind whose parameters are given in files with ex-
tension .par in directory param of TestU01. If the file name in the Create functions below
is set to NULL, a default predefined family will be used. Otherwise, the given file will be used
to set the parameters of the generators of a family. The members of a predefined family
usually have a lsize equal to successive integers in [i1, i2].

The user may want to define his own family of generators. If it is closely related to one
of the predefined family, he may use one of the Create function in this module to create
his family. In that case, his parameter file must contain the family parameters in the same
order as the predefined family of the same kind (see the different cases of fcong_CreateLCG
below for an example).

More information about each specific kind of generator considered can be found by look-
ing at the corresponding function in modules u... For example, fcong_CreateInvImpl2b
implements the same generators as in function uinv_CreateInvImpl2b.

#include "ffam.h"

The families of generators

ffam_Fam * fcong_CreateLCG (char *fname, int i1, int i2, int istep);

Creates a family of LCG generators whose parameters are defined in file named fname, beginning
with the first generator whose lsize is i1, up to the last generator whose lsize is i2, taking every
istep generator. The predefined LCG files are:

• LCGGood.par: the generators have a good lattice structure up to dimension 8 (at least),
with a prime modulus m just below 2i and period m − 1, for 10 ≤ i ≤ 60. For each i, the
LCG provided is the one with the best value of M8 in [81]. Restrictions: 10 ≤ i1 ≤ i2 ≤ 60.

• LCGBad2.par: Similar to the LCGGood family, but with a lattice structure that is bad
in dimension 2. The figure of merit S2 in dimension 2 is approximately 0.05. Restrictions:
10 ≤ i1 ≤ i2 ≤ 40.

• LCGWu2.par: the generators have a good lattice structure as the LCGGood family, but
with the restriction that the multiplier is a sum or a difference of two powers of 2, as suggested
by P. C. Wu [177]. Restrictions: 10 ≤ i1 ≤ i2 ≤ 40.
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• LCGGranger.par: the generators have a good lattice structure up to dimension 8 (at least),
with a prime modulus m just below 2i, for 10 ≤ i ≤ 31. They were chosen so as to give a
maximal period for the combined generators in modules ugranger and tgranger.

ffam_Fam * fcong_CreateLCGPow2 (char *fname, int i1, int i2, int istep);

Creates a family of LCG generators whose parameters are defined in file named fname. By
default, uses a predefined family of generators with a good lattice structure as the LCGGood
family, but with the modulus equal to 2i and period length also equal to 2i. (The recurrence
has a nonzero constant term.) Restrictions: 10 ≤ i1 ≤ i2 ≤ 40.

ffam_Fam * fcong_CreateMRG2 (char *fname, int i1, int i2, int istep);

Creates the family of MRG (multiple-recursive generators) of order 2 whose parameters are
defined in file named fname. By default, uses a predefined family of generators with a good
lattice structure up to dimension 8 (at least), with a prime modulus m just below 2i/2 and
period length m2 − 1. The implementation is similar to that of the LCGs. Restrictions: 20 ≤
i1 ≤ i2 ≤ 60.

ffam_Fam * fcong_CreateMRG3 (char *fname, int i1, int i2, int istep);

Creates the family of MRG of order 3 whose parameters are defined in file named fname. By
default, uses a predefined family of generators with a good lattice structure up to dimension
8 (at least), with a prime modulus m just below 2i/3 and period length m3 − 1. Restrictions:
30 ≤ i1 ≤ i2 ≤ 90.

ffam_Fam * fcong_CreateCombL2 (char *fname, int i1, int i2, int istep);

Creates the family of combined LCG with two components, whose parameters are defined in
fname. The combination uses the method of L’Ecuyer [72]. By default, uses a predefined family
of generators with a good lattice structure up to dimension 8 (at least). The components have
distinct prime moduli m1 and m2 just below 2i/2 and the period length is (m1 − 1)(m2 − 1)/2.
The parameters are chosen to get an excellent value of M8 where M8 is defined as in [81].
Restrictions: 20 ≤ i1 ≤ i2 ≤ 60.

ffam_Fam * fcong_CreateCombWH2 (char *fname, int i1, int i2, int istep);

Same as fcong_CreateCombL2, except that the combination is of the Wichmann and Hill type
(see [97]). Restrictions: 20 ≤ i1 ≤ i2 ≤ 60.

ffam_Fam * fcong_CreateInvImpl (char *fname, int i1, int i2, int istep);

Creates the family of implicit inversive generators whose parameters are defined in fname. By
default, uses a predefined family of generators with prime modulus m slightly below 2i and
period length m. Restrictions: 10 ≤ i1 ≤ i2 ≤ 30.
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ffam_Fam * fcong_CreateInvImpl2a (char *fname, int i1, int i2, int istep);

Creates a predefined family of implicit inversive generators whose parameters are fixed, with
prime modulus m slightly below 2i+1 and period length m/2. Restrictions: 7 ≤ i1 ≤ i2 ≤ 31.

ffam_Fam * fcong_CreateInvImpl2b (char *fname, int i1, int i2, int istep);

Creates a predefined family of implicit inversive generators whose parameters are fixed, with
prime modulus m slightly below 2i and period length m. Restrictions: 7 ≤ i1 ≤ i2 ≤ 32.

ffam_Fam * fcong_CreateInvExpl (char *fname, int i1, int i2, int istep);

Creates the family of explicit inversive generators whose parameters are defined in fname. By
default, uses a predefined family of generators with prime modulus m slightly below 2i and
period length m. Restrictions: 10 ≤ i1 ≤ i2 ≤ 31.

ffam_Fam * fcong_CreateInvExpl2a (char *fname, int i1, int i2, int istep);

Creates a predefined family of explicit inversive generators whose parameters are fixed, with
prime modulus m slightly below 2i and period length m. Restrictions: 7 ≤ i1 ≤ i2 ≤ 32.

ffam_Fam * fcong_CreateInvExpl2b (char *fname, int i1, int i2, int istep);

Creates a predefined family of explicit inversive generators whose parameters are fixed, with
prime modulus m slightly below 2i and period length m. Restrictions: 7 ≤ i1 ≤ i2 ≤ 32.

ffam_Fam * fcong_CreateInvMRG2 (char *fname, int i1, int i2, int istep);

Creates the family of inversive MRG of order 2 whose parameters are defined in file fname. By
default, uses a predefined family of generators with a prime modulus m just below 2i/2 and
period length ≈ m2. Restrictions: 20 ≤ i1 ≤ i2 ≤ 60.

ffam_Fam * fcong_CreateCubic1 (char *fname, int i1, int i2, int istep);

Creates the family of cubic congruential generator whose parameters are defined in file fname.
By default, uses a predefined family of generators with modulus m slightly below 2i and period
length m. Restrictions: 6 ≤ i1 ≤ i2 ≤ 18.

ffam_Fam * fcong_CreateCombCubic2 (char *fname, int i1, int i2, int istep);

Creates the family of combined cubic congruential generators with 2 components whose param-
eters are defined in file fname. By default, uses a predefined family of generators with moduli
m1 and m2 slightly below 2e1 and 2e2 , where e1 + e2 = i and e2 = bi/2c. The period length
should be near 2i. Restrictions: 12 ≤ i1 ≤ i2 ≤ 36.
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ffam_Fam * fcong_CreateCombCubLCG (char *fname, int i1, int i2, int istep);

Creates the family of combined generators with one component a cubic congruential and the
other component an LCG whose parameters are defined in file fname. By default, uses a
predefined family of generators with respective moduli of the components m1 and m2 slightly
below 2e1 and 2e2 , where e1 + e2 = i and e2 = bi/2c. Restrictions: 19 ≤ i1 ≤ i2 ≤ 36.

Clean-up functions

void fcong_DeleteLCG (ffam_Fam *fam);
void fcong_DeleteLCGPow2 (ffam_Fam *fam);
void fcong_DeleteMRG2 (ffam_Fam *fam);
void fcong_DeleteMRG3 (ffam_Fam *fam);
void fcong_DeleteCombL2 (ffam_Fam *fam);
void fcong_DeleteCombWH2 (ffam_Fam *fam);
void fcong_DeleteInvImpl (ffam_Fam *fam);
void fcong_DeleteInvImpl2a (ffam_Fam *fam);
void fcong_DeleteInvImpl2b (ffam_Fam *fam);
void fcong_DeleteInvExpl (ffam_Fam *fam);
void fcong_DeleteInvExpl2a (ffam_Fam *fam);
void fcong_DeleteInvExpl2b (ffam_Fam *fam);
void fcong_DeleteInvMRG2 (ffam_Fam *fam);
void fcong_DeleteCubic1 (ffam_Fam *fam);
void fcong_DeleteCombCubic2 (ffam_Fam *fam);
void fcong_DeleteCombCubLCG (ffam_Fam *fam);

Frees the dynamic memory allocated to fam by the corresponding Create function.
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ffsr

This module operates in the same way as fcong (see the introduction in module fcong). It
defines linear feedback shift register (LFSR) generators of different period lengths (or number
of states) near powers of 2, and different kinds such as Tausworthe, GFSR, twisted GFSR
(TGFSR), and their combinations. All these generators are based on linear recurrences
modulo 2.

#include "ffam.h"

The families of generators

ffam_Fam * ffsr_CreateLFSR1 (char *fname, int i1, int i2, int istep);

Creates a family of simple LFSR (or Tausworthe) generators whose parameters are defined in file
named fname. By default, uses a predefined family of generators with primitive characteristic
trinomial of degree i (with period length 2i− 1) and the best equidistribution properties within
its class. Restrictions: 10 ≤ i1 ≤ i2 ≤ 60.

ffam_Fam * ffsr_CreateLFSR2 (char *fname, int i1, int i2, int istep);

Creates a family of combined LFSR generators with two components, whose parameters are
defined in file named fname. By default, uses a predefined family with each component based
on a primitive characteristic trinomial. The combination generator has period length near 2i−1
and the best possible equidistribution within its class. Restrictions: 10 ≤ i1 ≤ i2 ≤ 36.

ffam_Fam * ffsr_CreateLFSR3 (char *fname, int i1, int i2, int istep);

Creates a family of combined LFSR generators with three components, whose parameters are
defined in file named fname. By default, uses a predefined family with each component based
on a primitive characteristic trinomial. The combination generator has period length near 2i−1
and the best possible equidistribution within its class. Restrictions: 14 ≤ i1 ≤ i2 ≤ 36.

ffam_Fam * ffsr_CreateGFSR3 (char *fname, int i1, int i2, int istep);

Creates a family of generalized feedback shift register (GFSR) generators with primitive char-
acteristic trinomial of degree i (period length 2i − 1) and good equidistribution. ***** NOT
YET IMPLEMENTED.

ffam_Fam * ffsr_CreateGFSR5 (char *fname, int i1, int i2, int istep);

Creates a family of generalized feedback shift register (GFSR) generators with primitive char-
acteristic pentanomial of degree i (period length 2i− 1) and good equidistribution. ***** NOT
YET IMPLEMENTED.
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ffam_Fam * ffsr_CreateTGFSR1 (char *fname, int i1, int i2, int istep);

Creates a family of twisted GFSR generators with primitive characteristic trinomial of degree i
(period length 2i − 1) and good equidistribution. ***** NOT YET IMPLEMENTED.

ffam_Fam * ffsr_CreateTausLCG2 (char *fname, int i1, int i2, int istep);

Creates a family of combined generators that adds the outputs of an LCG and an LFSR2,
modulo 1, whose parameters are defined in file named fname. Each generator is created by
calling the function ulec_CreateCombTausLCG21. By default, uses a predefined family with
generators having a period near 2i. Restrictions: 20 ≤ i1 ≤ i2 ≤ 62.

Clean-up functions

void ffsr_DeleteLFSR1 (ffam_Fam *fam);
void ffsr_DeleteLFSR2 (ffam_Fam *fam);
void ffsr_DeleteLFSR3 (ffam_Fam *fam);
void ffsr_DeleteTausLCG2 (ffam_Fam *fam);

Frees the dynamic memory allocated to fam by the corresponding Create function.
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ftab

This module provides tools to manipulate and print tables of p-values and other results,
when statistical tests with different sample sizes are applied to a whole family of generators of
different sizes or different resolutions (or precisions). Each table contains a two-dimensional
array of values (Mat), indexed by i and j. The row i of Mat is associated with a genera-
tor of the family that is being tested, while the column j is associated with the different
sample sizes for the test being applied on the generator. Such a table can be created by
ftab_CreateTable, printed by ftab_PrintTable or ftab_PrintTable2, and deleted by
ftab_DeleteTable. The function ftab_MakeTables is used to run a series of tests on a
whole family of generators and to fill up the tables of results.

#include "ffam.h"
#include "unif01.h"

typedef struct {
double **Mat;
int *LSize;
int Nr, Nc;
int j1, j2, jstep;
ftab_FormType Form;
char *Desc;
char **Strings;
int Ns;

} ftab_Table;

A structure that contains a two-dimensional matrix Mat with Nr rows and Nc columns, used to
store the values of statistics, their p-values, or some other information depending on the format
Form, though the numbers are always stored as double’s. The values are stored in matrix
element Mat[i][j] for 0 ≤ i < Nr and 0 ≤ j < Nc. Row i of Mat is associated with a generator
of size LSize[i]. The index j is used to select the different sample sizes of a test for a given
generator. The character string Desc gives a short description of the table.

The array Strings points to the Ns possible messages that can be printed for each element
Mat[i][j] when Form is ftab_String. In this case, Mat[i][j] is an integer giving the index s
of the message Strings[s] to be printed. When Form is not ftab_String, Strings is set to
the NULL pointer. The function ftab_CreateTable creates such a structure.

Functions to manipulate tables

ftab_Table *ftab_CreateTable (int Nr, int j1, int j2, int jstep,
char *Desc, ftab_FormType Form, int Ns);

Creates a structure ftab_Table and its matrix Mat so that it can store test results in format
Form for a family of Nr generators. Each generator is subjected to tests with different sample
sizes indexed by j, with j varying from j1 to j2 by step of jstep. The function initializes the
description of the table to Desc. If Form = ftab_String, it also allocate an array of Ns pointers
of char for the field Strings of the structure.
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void ftab_DeleteTable (ftab_Table *T);

Frees all the memory allocated for T and deletes T.

void ftab_SetDesc (ftab_Table *T, char *Desc);

Sets the Desc field of T to Desc.

void ftab_InitMatrix (ftab_Table *T, double x);

Initializes all the values in T->Mat to x.

typedef void (*ftab_CalcType) (ffam_Fam *fam, void *res, void *cho,
void *par, int LSize, int j,
int irow, int icol);

Type of function called by ftab_MakeTables to fill up the entry (irow, icol) in one or more
tables of results. Typically, it computes p-values to be put in the appropriate table. It tests one
generator of the family fam, using res to keep the tables of results, cho is used to choose the
values of the varying parameters of the test as a function of the generator size LSize, of j and
the other parameters, while par holds the fixed parameters of the test. This function is used
internally by the tests.

void ftab_MakeTables (ffam_Fam *fam, void *res, void *cho, void *par,
ftab_CalcType Calc,
int Nr, int j1, int j2, int jstep);

This function calls Calc(fam, res, cho, par, LSize, j, irow, icol) on each of the first
Nr generators of family fam, for j going from j1 to j2 by step of jstep (thus varying the sample
size for a given generator). It uses res to keep the tables of results after all the tests have been
done on the family, cho is used to choose the values of the varying parameters of the test as a
function of the generator size and the other parameters, while par holds the fixed parameters
of the test. Normally, Calc calls a test and places the results (e.g., p-values) in the entries of
the appropriate tables.

Printing the tables

typedef enum {
ftab_Plain, /* To print tables in plain text */
ftab_Latex /* To print tables in Latex format */

} ftab_StyleType;

The possible styles in which the tables of this module can be printed.

extern ftab_StyleType ftab_Style;

This environment variable determines the style in which all the tables of this module will be
printed. The default value is ftab_Plain.
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typedef enum {
ftab_NotInit, /* Uninitialized */
ftab_pVal1, /* One-sided p-value */
ftab_pVal2, /* Two-sided p-value */
ftab_pLog10, /* Logarithm of p-value in base 10 */
ftab_pLog2, /* Logarithm of p-value in base 2 */
ftab_Integer, /* Integer number */
ftab_Real, /* Real number */
ftab_String /* String */

} ftab_FormType;

Possible formats that can be used to print the table entries. An appropriate format must be
chosen before printing. Here, ftab_pVal1 stands for a one-sided p-value (a number in the
interval [0, 1]), printed only when it is near 0; ftab_pVal2 stands for a two-sided p-value,
printed when it is near 0 or near 1 (p-values near 1 are printed as −p instead of 1 − p). The
other formats are self-evident.

extern double ftab_Suspectp;

Environment variable used in ftab_PrintTable and ftab_PrintTable2 to determine which
p-values should be printed in the table. When the format ftab_pVal2 is used, only the p-
values outside the interval [ftab_Suspectp, 1−ftab_Suspectp] will be considered suspect and
printed. The default value is 0.01.

extern int ftab_SuspectLog2p;

Environment variable used in ftab_PrintTable and ftab_PrintTable2 to determine which p-
values should be printed in the table, when using the format ftab_pLog2. If ftab_SuspectLog2p
= σ, the p-values outside the interval [1/2σ, 1 − 1/2σ] are considered suspect and are printed.
The default value is 6.

void ftab_PrintTable (ftab_Table *T);

Prints the values T->Mat[i][j], one value of i per line, for 0 ≤ i < T->Nr and 0 ≤ j < T->Nc.

If Form = ftab_pVal1, prints the entries as p-values for one-sided tests (prints only the ones
close to 0, i.e., less than ftab_Suspectp). If Form = ftab_pVal2, prints the entries as p-values
for two-sided tests (prints only those close to 0 or 1, i.e., less than ftab_Suspectp or larger
than 1 − ftab_Suspectp). If the p-value p < ftab_Suspectp, then print p as is. unless p <
gofw_Epsilonp, in which case eps will be printed (\eps when ftab_Latex style is chosen). If
p > 1− ftab_Suspectp, then print p− 1. unless p > 1− gofw_Epsilonp, in which case -eps
will be printed (\epsm when ftab_Latex style is chosen).

In the case where Form = ftab_pLog10, if p ≤ ftab_Suspectp it prints Round(− log10 p), else
if p ≥ 1− ftab_Suspectp it prints −Round(− log10(1 − p)), otherwise it prints nothing. In
the case where Form = ftab_pLog2, if p ≤ 2−σ, where σ = ftab_SuspectLog2p, it prints
Round(− log2 p), else if p ≥ 1 − 1/2σ it prints −Round(− log2(1 − p)), and otherwise it prints
nothing.
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If Form = ftab_Integer, it prints them as (rounded) integers. If Form = ftab_Real, it
prints them as double’s. If Form = ftab_String, prints the string T->Strings[s] where s
= Round(T->Mat[i][j]).

void ftab_PrintTable2 (ftab_Table *T1, ftab_Table *T2, boolean ratioF);

Similar to ftab_PrintTable, but prints two tables simultaneously, using two columns for each
entry, for purposes of comparison. If the flag ratioF is TRUE, it prints the numbers of the first
table in a first column, and the ratio of the numbers from the second table over the corresponding
numbers from the first table in the second column. This is done for each element of the tables.
If the flag ratioF is FALSE, the numbers from the second table will be printed as is.
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fres

This module defines common structures used to keep the results of tests in the f modules.
They are described in the detailed version of this guide.

The argument res of each testing function is a structure that can keep the test results,
i.e. tables of p-values, . . . . This is useful if one wishes to do something else with the results
or the information generated during a test. If one does not want to post-process or use
the results after a test, it suffices to set the res argument to the NULL pointer. Then, the
structure is created and deleted automatically inside the testing function. In any case, the
tables of results will be printed automatically on standard output.
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fcho

This module provides tools to choose the value of some parameters of a test as a function
of the generator’s lsize and other parameters, when a sequence of tests is applied to a family
of generators. The sample size n, for example, is normally chosen by the functions in this
module.

Choosing one parameter

typedef struct {
void *param;
double (*Choose) (void *param, long, long);
void (*Write) (void *param, long, long);
char *name;

} fcho_Cho;

This structure is used to choose and keep some of the parameters of a test (e.g. the sample size)
as a function of the lsize of the generator and some other parameters. The function Choose
computes a parameter which appear as argument in a test function from a s module which is
applied on a family of generators. The parameters of Choose itself are kept in param. The
function Write writes some information about the parameters and the Choose function. The
string name is the name of the parameter that is computed by Choose.

long fcho_ChooseParamL (fcho_Cho *cho, long min, long max, long i, long j);

This function chooses a parameter (most often the sample size) by calling cho->Choose
(cho->param, i, j). If the chosen parameter is smaller than min or larger than max, the
function returns −1, otherwise it returns the chosen parameter.

Choosing two parameters

typedef struct {
fcho_Cho *Chon;
fcho_Cho *Chop2;

} fcho_Cho2;

fcho_Cho2 * fcho_CreateCho2 (fcho_Cho *Chon, fcho_Cho *Chop2);

This function creates and returns a structure to hold the two sub-structures Chon and Chop2.
It will not create the memory for Chon or Chop2 themselves, which must have been created
before. These two are used when choosing the sample size n and another parameter p2 in the
same test. For some tests, both n and the other parameter can be varied as the sample size;
in this case, one of these two arguments may be a NULL pointer. For some other tests, both
parameters must be chosen.

180



void fcho_DeleteCho2 (fcho_Cho2 *cho);

Frees the memory allocated by fcho_CreateCho2, but not the memory reserved for the two
fields Chon and Chop2.

Choosing the sample size

typedef double (*fcho_FuncType) (double);

This kind of function is used to compute a parameter for a test depending on the lsize of the
generator and the other parameters of the test.

double fcho_Linear (double x);

Returns x.

double fcho_LinearInv (double x);

Returns 1/x.

double fcho_2Pow (double x);

Returns 2x.

fcho_Cho * fcho_CreateSampleSize (double a, double b, double c,
fcho_FuncType F, char *name);

Creates and returns a structure fcho_Cho which is used normally to compute the sample size
of a test. Given the two arguments i and j of the Choose function in fcho_Cho, the function
will return the value of F (a ∗ i + b ∗ j + c). The string name is the name of the variable that
is being computed by Choose. One can choose both F and name as the NULL pointers, in which
case these two will be set to default variables fcho_2Pow and “n”. Then the sample size of the
test will be chosen as n = 2a∗i+b∗j+c, where i is the lsize of the generator being tested.

void fcho_DeleteSampleSize (fcho_Cho *cho);

Frees the memory allocated by fcho_CreateSampleSize.

Choosing the number of bits

Each generator returns a given number of bits of resolution in its output values. The
resolution usually increases with the lsize of the generator. It would be meaningless to apply
a test that requires more bits of resolution than the generator can deliver, since the extra
bits will be akin to noise.
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Many of the tests depend on the two arguments r and s. The argument r is the number
of (most significant) bits dropped from each random number outputted by the generator,
while s is the number of bits from each random number that are kept and used in the test.

int fcho_Chooses (int r, int s, int resol);

This function returns the number of bits s1 that are effectively used in a test when the test
function depends on s. resol is the resolution of the generator being tested. If r + s ≤ resol,
then the function returns s unchanged. Otherwise, the function returns s1 = resol − r. When
s1 ≤ 0, then obviously the test should not be done.
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fmultin

This module applies multinomial tests, from the module smultin, to a family of genera-
tors of different sizes.

#include "gdef.h"
#include "ftab.h"
#include "ffam.h"
#include "fres.h"
#include "fcho.h"
#include "smultin.h"

extern long fmultin_Maxn;

Upper bound on n. A test is called only when n does not exceed this value. Default value: 224.

Choosing the parameters

Given the sample size n, the following functions determines how the number of cells k
is chosen according to different criteria. This will determine the other varying parameter of
the tests besides n. The returned structure must be passed as the second member in the
argument cho of the test, the first member of cho being always the function that chooses
the sample size n.

fcho_Cho * fmultin_CreateEC_DT (long N, int t, double EC);
fcho_Cho * fmultin_CreateEC_2HT (long N, int t, double EC);
fcho_Cho * fmultin_CreateEC_2L (long N, double EC);
fcho_Cho * fmultin_CreateEC_T (long N, double EC);

Given the number of replications N , the sample size n, these functions choose the number of cells
k so that the expected number of collisions is approximately EC, i.e. EC ≈ Nn2/2k. Given
the dimension t, the function fmultin_CreateEC_DT chooses the one-dimensional interval d so
that k = dt, and fmultin_CreateEC_2HT chooses d = 2h so that k = 2ht (d is a power of 2 with
h integer). These two cases apply to the tests fmultin_Serial1 and fmultin_SerialOver1.
The function fmultin_CreateEC_2L chooses L so that k = 2L. This case applies to the tests
fmultin_SerialBits1 and fmultin_SerialBitsOver1. The function fmultin_CreateEC_T
chooses t so that k = t!. This case applies to the test fmultin_Permut1.

void fmultin_DeleteEC (fcho_Cho *cho);

Frees the memory allocated by the create functions fmultin_CreateEC...

fcho_Cho * fmultin_CreateDens_DT (int t, double R);
fcho_Cho * fmultin_CreateDens_2HT (int t, double R);
fcho_Cho * fmultin_CreateDens_2L (double R);
fcho_Cho * fmultin_CreateDens_T (double R);

Similar to fmultin_CreateEC..., but the parameters are chosen so that the density (the num-
ber of points per cell) is approximately R ≈ n/k.
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void fmultin_DeleteDens (fcho_Cho *cho);

Frees the memory allocated by fmultin_CreateDens...

fcho_Cho * fmultin_CreatePer_DT (int t, double R);
fcho_Cho * fmultin_CreatePer_2HT (int t, double R);
fcho_Cho * fmultin_CreatePer_2L (double R);
fcho_Cho * fmultin_CreatePer_T (double R);

Similar to fmultin_CreateEC..., but the parameters are chosen so that the number of cells k
is approximately R times the period length of the generator, i.e., k ≈ R 2lsize .

void fmultin_DeletePer (fcho_Cho *cho);

Frees the memory allocated by fmultin_CreatePer...

The tests

void fmultin_Serial1 (ffam_Fam *fam, smultin_Param *par,
fmultin_Res *res, fcho_Cho2 *cho,
long N, int r, int t, boolean Sparse,
int Nr, int j1, int j2, int jstep);

Applies the same tests as in smultin_Multinomial with smultin_GenerCellSerial, with pa-
rameters N and r, in dimension t and with the same parameter Sparse, for the first Nr generators
of family fam, for j going from j1 to j2 by steps of jstep. The sample size n is chosen by the
function cho->Chon while the number of cells k is chosen by cho->Chop2. This last must have
been initialized by one of the method for choosing cells described above. Whenever n exceeds
fmultin_Maxn or k exceeds smultin_Maxk, the test is not run.

void fmultin_SerialOver1 (ffam_Fam *fam, smultin_Param *par,
fmultin_Res *res, fcho_Cho2 *cho,
long N, int r, int t, boolean Sparse,
int Nr, int j1, int j2, int jstep);

Similar to fmultin_Serial1, except that it applies the tests in the function smultin_Multi-
nomialOver.

void fmultin_SerialBits1 (ffam_Fam *fam, smultin_Param *par,
fmultin_Res *res, fcho_Cho2 *cho,
long N, int r, int s, boolean Sparse,
int Nr, int j1, int j2, int jstep);

Similar to fmultin_Serial1, except that it applies the tests in the function smultin_Multi-
nomialBits.
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void fmultin_SerialBitsOver1 (ffam_Fam *fam, smultin_Param *par,
fmultin_Res *res, fcho_Cho2 *cho,
long N, int r, int s, boolean Sparse,
int Nr, int j1, int j2, int jstep);

Similar to fmultin_SerialBits1, except that it applies the tests in the function smultin_Mul-
tinomialBitsOver.

void fmultin_Permut1 (ffam_Fam *fam, smultin_Param *par,
fmultin_Res *res, fcho_Cho2 *cho,
long N, int r, boolean Sparse,
int Nr, int j1, int j2, int jstep);

Similar to fmultin_Serial1 except that it uses smultin_GenerCellPermut to generate the cell
numbers. Here, d is unused and t is chosen as a function of k by k = t!.
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fnpair

This module applies close-pairs tests from the module snpair to a family of generators
of different sizes.

#include "gdef.h"
#include "ffam.h"
#include "fres.h"
#include "fcho.h"
#include "snpair.h"

extern long fnpair_Maxn;

Upper bound on n. When n exceeds its limit value, the test is not done. Default value: n = 222.

Choosing the parameter m

One may choose to vary the parameter m as a function of the sample size in the test
fnpair_ClosePairs1. In that case, one must create an appropriate Choose function, pass
it as a member of the argument cho to the test, and call the test with a negative m to signal
that this is the case. If one wants to do the test with a fixed m, one has but to give the
given m > 0 as a parameter to the test.

fcho_Cho *fnpair_CreateM1 (int maxm);

Given the number of replications N and the sample size n, the parameter m in snpair_Close-

Pairs will be chosen by the relation m = min
{
maxm,

√
n/

(
4
√

N
)}

. If this method of choosing

m is used, then the returned structure must be passed as the second pointer in the argument
cho of the test and the argument m of the test fnpair_ClosePairs1 must be negative.

void fnpair_DeleteM1 (fcho_Cho * cho);

Frees the memory allocated by fnpair_CreateM1.

Applying the tests

void fnpair_ClosePairs1 (ffam_Fam *fam, fnpair_Res1 *res, fcho_Cho2 *cho,
long N, int r, int t, int p, int m,
int Nr, int j1, int j2, int jstep);

This function calls the test snpair_ClosePairs with parameters N and r, in dimension t, with
Lp norm, sample size n = cho->Chon->Choose(param, i, j), for the first Nr generators of
family fam, for j going from j1 to j2 by steps of jstep. The parameters in param were set at
the creation of cho and i is the lsize of the generator being tested. If m > 0, it will be used as
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is in the test. If m < 0, it will be chosen by m = cho->Chop2->Choose(param, N, n). When
n exceeds fnpair_Maxn or n < 4m2N1/2, the test is not done.

void fnpair_Bickel1 (ffam_Fam *fam, fnpair_Res1 *res, fcho_Cho *cho,
long N, int r, int t, int p, boolean Torus,
int Nr, int j1, int j2, int jstep);

Similar to fnpair_ClosePairs1 but with snpair_BickelBreiman. There is no parameter m
in this test.

void fnpair_BitMatch1 (ffam_Fam *fam, fnpair_Res1 *res, fcho_Cho *cho,
long N, int r, int t,
int Nr, int j1, int j2, int jstep);

Similar to fnpair_Bickel1 but with snpair_ClosePairsBitMatch.
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fknuth

This module applies tests from the module sknuth to families of generators of different
sizes, and prints tables of the corresponding p-values.

#include "gdef.h"
#include "ffam.h"
#include "fres.h"
#include "fcho.h"

extern long fknuth_Maxn;

Upper bound on n. A test is called only when n does not exceed this value. Default value:
222.

Applying the tests

void fknuth_Serial1 (void);

This is equivalent to calling fmultin_Serial1 with Sparse = FALSE, NbDelta = 1, and Val-
Delta[0] = 1.

void fknuth_SerialSparse1 (void);

This is equivalent to calling fmultin_Serial1 with Sparse = TRUE, NbDelta = 1, and Val-
Delta[0] = 1.

void fknuth_Collision1 (void);

This is equivalent to calling fmultin_Serial1 with Sparse = TRUE, NbDelta = 1, and Val-
Delta[0] = -1.

void fknuth_Permutation1 (void);

This is equivalent to calling fmultin_Permut1 with Sparse = FALSE, NbDelta = 1, and Val-
Delta[0] = 1.

void fknuth_CollisionPermut1 (void);

This is equivalent to calling fmultin_Permut1 with Sparse = TRUE, NbDelta = 1, and Val-
Delta[0] = -1.

void fknuth_Gap1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r, double Alpha, double Beta,
int Nr, int j1, int j2, int jstep);

This function calls the test sknuth_Gap with parameters N, n, r, Alpha, Beta, for sample
size n chosen by the function cho->Choose(param, i, j), for the first Nr generators of family
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fam, for j going from j1 to j2 by steps of jstep. The parameters in param were set at the
creation of cho and i is the lsize of the generator being tested. When n exceeds fknuth_Maxn,
the test is not run.

void fknuth_SimpPoker1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r, int d, int k,
int Nr, int j1, int j2, int jstep);

Similar to fknuth_Gap but with sknuth_SimpPoker.

void fknuth_CouponCollector1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r, int d,
int Nr, int j1, int j2, int jstep);

Similar to fknuth_Gap but with sknuth_CouponCollector.

void fknuth_Run1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r, boolean Up, boolean Indep,
int Nr, int j1, int j2, int jstep);

Similar to fknuth_Gap but with sknuth_RunIndep if Indep = TRUE, and sknuth_Run otherwise.

void fknuth_MaxOft1 (ffam_Fam *fam, fknuth_Res1 *res, fcho_Cho *cho,
long N, int r, int d, int t,
int Nr, int j1, int j2, int jstep);

Similar to fknuth_Gap but with sknuth_MaxOft.
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fmarsa

This module applies tests from the module smarsa to a family of generators of different
sizes.

#include "ffam.h"
#include "fres.h"
#include "fcho.h"

extern long fmarsa_Maxn, fmarsa_MaxL;

Upper bound on the sample size n in fmarsa_BirthdayS1 and on the dimension L × L of the
matrices in fmarsa_MatrixR1. A test is called only when n and L do not exceed their limit
value. Default values: n = 224 and L = 212.

Choosing the parameters

fcho_Cho * fmarsa_CreateBirthEC (long N, int t, double EC);

Given the number of replications N , the dimension t and the sample size n, the parameter
d in smarsa_BirthdaySpacings will be chosen so that the expected number of collisions is
approximately EC, i.e. EC = Nn3/4dt. The returned structure must be passed as the second
pointer in the argument cho of the test.

void fmarsa_DeleteBirthEC (fcho_Cho *cho);

Frees the memory allocated by fmarsa_CreateBirthEC.

The tests

void fmarsa_SerialOver1 (void);

This is equivalent to calling fmultin_SerialOver1 with Sparse = FALSE, NbDelta = 1, and
ValDelta[0] = 1.

void fmarsa_CollisionOver1 (void);

This is equivalent to calling fmultin_SerialOver1 with Sparse = TRUE, NbDelta = 1, and
ValDelta[0] = -1.

void fmarsa_BirthdayS1 (ffam_Fam *fam, fres_Poisson *res, fcho_Cho2 *cho,
long N, int r, int t, int p,
int Nr, int j1, int j2, int jstep);

This function calls the test smarsa_BirthdaySpacings with parameters N, n, r, d, t and p for
the first Nr generators of family fam, for j going from j1 to j2 by steps of jstep. The sample
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size n and the one-dimensional interval d are chosen from n = cho->Chon->Choose(param,
i, j) and d = cho->Chop2->Choose(param, n, 0). Chon and Chop2 must have been created
before. When n exceeds fmarsa_Maxn or k = dt exceeds fmarsa_Maxk, the test is not run.

void fmarsa_MatrixR1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho2 *cho,
long N, long n, int r, int s, int L,
int Nr, int j1, int j2, int jstep);

This function calls the test smarsa_MatrixRank with parameters N, n, r, s, L for the first
Nr generators of family fam, for j going from j1 to j2 by steps of jstep. Either or both
of n and L can be varied as the sample size, by passing a negative value as an argument
of the function. One must then create the corresponding function cho->Chon or cho->Chop2
before calling the test. One will have either n = cho->Chon->Choose(param, i, j), or L =
cho->Chop2->Choose(param, i, j). A positive value for n or L will be used as is by the test.
When n exceeds fmarsa_Maxn or L exceeds fmarsa_MaxL, the test is not run. Only square
matrices of order L× L are considered.

void fmarsa_GCD1 (ffam_Fam *fam, fmarsa_Res2 *res, fcho_Cho *cho,
long N, int r, int s,
int Nr, int j1, int j2, int jstep);

This function calls the test smarsa_GCD with parameters N, n, r, s for sample size n chosen by
n = cho->Choose(param, i, j), for the first Nr generators of family fam, for j going from j1
to j2 by steps of jstep. When n exceeds fmarsa_Maxn, the test is not run.

191



fvaria

This module applies tests from the module svaria to a family of generators of different
sizes.

#include "ffam.h"
#include "fres.h"
#include "fcho.h"

extern long fvaria_MaxN;
extern long fvaria_Maxn;
extern long fvaria_Maxk;
extern long fvaria_MaxK;

Upper bounds on N , n, k and K. When N , n, k or K exceed their limit value, the test is not
done. Default values: N = 222, n = 222, k = 222 and K = 222.

The tests

void fvaria_SampleMean1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long n, int r,
int Nr, int j1, int j2, int jstep);

This function calls the test svaria_SampleMean with parameters N , n and r for sample size N
chosen by the function cho->Choose(param, i, j), for the first Nr generators of family fam,
for j going from j1 to j2 by steps of jstep. The parameters in param were set at the creation
of cho and i is the lsize of the generator being tested. When N exceeds fvaria_MaxN, the test
is not done.

void fvaria_SampleCorr1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r, int k,
int Nr, int j1, int j2, int jstep);

This function calls the test svaria_SampleCorr with parameters N, n, r and k for sample size
n chosen by the function cho->Choose(param, i, j), for the first Nr generators of family fam,
for j going from j1 to j2 by steps of jstep. The parameters in param were set at the creation
of cho and i is the lsize of the generator being tested. When n exceeds fvaria_Maxn, the test
is not done.

void fvaria_SampleProd1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r, int t,
int Nr, int j1, int j2, int jstep);

Similar to fvaria_SampleCorr1 but with svaria_SampleProd.

void fvaria_SumLogs1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r,
int Nr, int j1, int j2, int jstep);

Similar to fvaria_SampleCorr1 but with svaria_SumLogs.
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void fvaria_SumCollector1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r, double g,
int Nr, int j1, int j2, int jstep);

Similar to fvaria_SampleCorr1 but with svaria_SumCollector.

void fvaria_Appearance1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r, int s, int L,
int Nr, int j1, int j2, int jstep);

Similar to fvaria_SampleCorr1 but with svaria_AppearanceSpacings and with K as the
varying sample size.

void fvaria_WeightDistrib1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho2 *cho,
long N, long n, int r, long k,
double alpha, double beta,
int Nr, int j1, int j2, int jstep);

This function calls the test svaria_WeightDistrib with parameters N, n, r, k, alpha, and beta
for the first Nr generators of family fam, for j going from j1 to j2 by steps of jstep. Either
or both of n and k can be varied as the sample size, by passing a negative value as argument
of the function. One must then create the corresponding function cho->Chon or cho->Chop2
before calling the test. One will have either n = cho->Chon->Choose(param, i, j), or k =
cho->Chop2->Choose(param, i, j) or both. A positive value for n or k will be used as is by
the test. When n exceeds fvaria_Maxn or k exceeds fvaria_Maxk, the test is not done.
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fwalk

This module applies random-walk tests from the module swalk to a family of generators
of different sizes.

#include "ffam.h"
#include "fres.h"
#include "fcho.h"

extern long fwalk_Maxn;
extern long fwalk_MaxL;
extern double fwalk_MinMu;

Upper bounds on n, L and lower bound on Mu. When n, L or Mu exceed their limit value, the
tests are not done. Default values: n = 222, L = 222 and Mu = 2−22.

The tests

void fwalk_RWalk1 (ffam_Fam *fam, fwalk_Res1 *res, fcho_Cho2 *cho,
long N, long n, int r, int s, long L,
int Nr, int j1, int j2, int jstep);

This function calls the test swalk_RandomWalk1 with parameters N, n, r, s, and L for the
first Nr generators of family fam, for j going from j1 to j2 by steps of jstep. Either or
both of n and L can be varied as the sample size, by passing a negative value as argument
of the function. One must then create the corresponding function cho->Chon or cho->Chop2
before calling the test. One will have either n = cho->Chon->Choose(param, i, j), or L =
cho->Chop2->Choose(param, i, j) or both. A positive value for n or L will be used as is by
the test. When n exceeds fwalk_Maxn or L exceeds fwalk_MaxL, the test is not run.

void fwalk_VarGeoP1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho2 *cho,
long N, long n, int r, double Mu,
int Nr, int j1, int j2, int jstep);

This function calls the test swalk_VarGeoP with parameters N, n, r, Mu for the first Nr gener-
ators of family fam, for j going from j1 to j2 by steps of jstep. Either or both of n and Mu can be
varied as the sample size, by passing a negative value as argument of the function. One must then
create the corresponding function cho->Chon or cho->Chop2 before calling the test. One will
have either n = cho->Chon->Choose(param, i, j), or Mu = cho->Chop2->Choose(param,
i, j). A positive value for n or Mu will be used as is by the test. When n exceeds fwalk_Maxn
or Mu is less than fwalk_MinMu, the test is not done.

void fwalk_VarGeoN1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho2 *cho,
long N, long n, int r, double Mu,
int Nr, int j1, int j2, int jstep);

Similar to fwalk_VarGeoP1 but with swalk_VarGeoN.
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fspectral

This module applies spectral tests from the module sspectral to a family of generators
of different sizes.

#include "ffam.h"
#include "fres.h"
#include "fcho.h"

extern long fspectral_MaxN;

Upper bound on N . When N exceeds its limit value, the tests are not done. Default value:
N = 222.

The tests

void fspectral_Fourier3 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
int k, int r, int s,
int Nr, int j1, int j2, int jstep);

This function calls the test sspectral_Fourier3 with parameters N , k, r, and s for sample
size N chosen by N = cho->Choose(param, i, j), for the first Nr generators of family fam,
for j going from j1 to j2 by steps of jstep. The parameters in param were set at the creation
of cho and i is the lsize of the generator being tested. When N exceeds fspectral_MaxN, the
test is not done.
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fstring

This module applies tests from the module sstring to a family of generators of different
lsizes. The results are placed in tables of p-values.

#include "ffam.h"
#include "fres.h"
#include "fcho.h"

extern long fstring_Maxn, fstring_MaxL;

Upper bound on n and L. A test is called only when n and L do not exceed their limit value.
Default values: n = 222 and L = 220.

The tests

void fstring_Period1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r, int s,
int Nr, int j1, int j2, int jstep);

This function calls the test sstring_PeriodsInStrings with parameters N, r, s and sample
size n = cho->Choose(param, i, j), for the first Nr generators of family fam, for j going from
j1 to j2 by steps of jstep. The parameters in param were set at the creation of cho and i is
the lsize of the generator being tested. When n exceeds fstring_Maxn, the test is not run.

void fstring_Run1 (ffam_Fam *fam, fstring_Res2 *res, fcho_Cho *cho,
long N, int r, int s,
int Nr, int j1, int j2, int jstep);

Similar to fstring_Period1 but with sstring_Run.

void fstring_AutoCor1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho *cho,
long N, int r, int s, int d,
int Nr, int j1, int j2, int jstep);

Similar to fstring_Period1 but with sstring_AutoCor.

void fstring_LongHead1 (ffam_Fam *fam, fstring_Res1 *res, fcho_Cho2 *cho,
long N, long n, int r, int s, long L,
int Nr, int j1, int j2, int jstep);

This function calls the test sstring_LongestHeadRun with parameters N, r, s for the first Nr
generators of family fam, for j going from j1 to j2 by steps of jstep. If s is greater than
the resolution of the generator, it will be reset to the resolution of the generator. Either or
both of n and L can be varied as the sample size, by passing a negative value as an argument
of the function. One must then create the corresponding function cho->Chon or cho->Chop2
before calling the test. One will have either n = cho->Chon->Choose(param, i, j), or L =
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cho->Chop2->Choose(param, i, j) (or both). A positive value for n or L will be used as is
by the test. When n exceeds fstring_Maxn or L exceeds fstring_MaxL, the test is not run.

void fstring_HamWeight1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho2 *cho,
long N, long n, int r, int s, long L,
int Nr, int j1, int j2, int jstep);

Similar to fstring_LongHead1 but with sstring_HammingWeight.

void fstring_HamWeight2 (ffam_Fam *fam, fres_Cont *res, fcho_Cho2 *cho,
long N, long n, int r, int s, long L,
int Nr, int j1, int j2, int jstep);

Similar to fstring_LongHead1 but with sstring_HammingWeight2.

void fstring_HamCorr1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho2 *cho,
long N, long n, int r, int s, long L,
int Nr, int j1, int j2, int jstep);

Similar to fstring_LongHead1 but with sstring_HammingCorr.

void fstring_HamIndep1 (ffam_Fam *fam, fres_Cont *res, fcho_Cho2 *cho,
long N, long n, int r, int s, long L,
int Nr, int j1, int j2, int jstep);

Similar to fstring_LongHead1 but with sstring_HammingIndep.
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Hörmann-Derflinger, 25

211



inversive, 42
ISAAC, 79
Java, 80
Kirkpatrick-Stoll, 38
KISS, 63
Knuth, 65
L’Ecuyer, 26, 54
L’Ecuyer-Andres, 54
L’Ecuyer-Blouin-Couture, 54
lag-Fibonacci, 28, 29
LFIB4, 64
LFSR, 34
lfsr113, 56
lfsr258, 56
lfsr88, 56
linear congruential, 23
Marsa90a, 59
Marsaglia, 59
Mathematica-Integer, 82
Mathematica-Real, 82
MATLAB, 81
Matlab-5, 62
Mersenne twister, 40
MRG31k3p, 57
MRG32k3a, 55
MRG32k3b, 55
MRG32k5a, 55
MRG32k5b, 56
MRG63k3a, 56
MRG93, 54
MT19937, 40
MultiCarry, 61
multiple recursive, 28
multiply-with-carry, 32

combined, 33
Numerical Recipes, 75
quadratic, 45
Ran0, 75
Ran1, 75
Ran2, 75
ran_array, 65
ranf_array, 65
Ranlux, 31
RANMAR, 59

RANROT, 84
read from file, 86
Rey, 84
Rijndael, 78
Ripley, 38
S-PLUS, 80
SHA1, 79
Sherif-Dear, 84
shift-register, 37
shift-with-carry, 32
SHR3, 64
speed, 16
subtract-with-borrow, 31
supdup64, 62
SuperDuper, 61
SuperDuper96, 61
SWB, 64
T800, 39
Tausworthe, 34
Tezuka, 58
The Mother of all RNG’s, 59
timing, 16
Tindo, 84
Tootill, 37
Touzin, 67, 68
TT400, 39
TT403, 39
TT775, 40
TT800, 40
ULTRA, 61
Unix random, 80
user defined, 15, 18
VisualBasic, 81
Weyl, 74
Wichmann-Hill, 26, 55, 56, 81
Wu, 24, 72
xor4096d, 52
xor4096i, 52
xor4096l, 52
xor4096r, 53
xor4096s, 51
Xorgen32, 51
Xorgen64, 52
Xorshift, 48, 51

212



Xorshift13, 50
Xorshift7, 49
Ziff, 38

goodness-of-fit tests, 89

Hamming weight, 128

Lempel-Ziv compression, 124
loglikelihood, 96

Marsaglia, 113
multinomial, 96

NIST tests suite, 6, 156

overlapping pairs sparse occupancy, 113

Pearson, 97
permutations, 97, 112
power divergence, 96

Rabbit, 152
random binary matrix, 115
random walk, 120

scatter plot, 133
serial, 97
single-level tests, 88
SmallCrush, 143
spacings, 131

logarithms, 131
squares, 132

spectral, 125
spectrum, 125
SPRNG, 6

Test
AllSpacings, 132
AllSpacings2, 132
AppearanceSpacings, 119
Auto-correlation

bit, 130
real, 117

AutoCor, 130
BickelBreiman, 109
BirthdaySpacings, 114
CAT, 114

CATBits, 114
ClosePairs, 109
ClosePairsBitMatch, 109
Collision, 112
CollisionArgMax, 118
CollisionOver, 113
CollisionPermut, 112
compression, see LempelZiv
CouponCollector, 111
EntropyDisc, 105
EntropyDiscOver, 105
EntropyDiscOver2, 106
EntropyDM, 106
EntropyDMCirc, 106
Fourier1, 125
Fourier2, 125
Fourier3, 125, 126
Frequency, see HammingWeight
Gap, 111
GCD, 116
HammingCorr, 128
HammingIndep, 128
HammingWeight, 128
HammingWeight2, 128
Independence of bits, 128
LempelZiv, 124
linear complexity, see LinearComp
LinearComp, 123
Longest Run of ones, see LongestHead-

Run
LongestHeadRun, 127
MatrixRank, 115
Maurer, see AppearanceSpacings
Maximum of t, 112
Monobit, see HammingWeight2
Multinomial, 103
MultinomialBits, 104
MultinomialBitsOver, 104
MultinomialOver, 104
nearest pairs, 107
OPSO, 113
PeriodsInStrings, 127
Permutation, 110
Poker, 111

213



RandomWalk1, 120
RandomWalk1a, 121
Run

bits, 129
reals, 111

RunIndep, 112
SampleCorr, 117
SampleMean, 117
SampleProd, 117
Savir2, 115
ScanSpacings, 132
Serial, 110
SerialOver, 113
SerialSparse, 110
SumCollector, 119
SumLogs, 118
SumLogsSpacings, 131
SumSquaresSpacings, 132
Universal, see AppearanceSpacings
VarGeoN, 122
VarGeoP, 122
WeightDistrib, 118

timer, 16
two-levels tests, 89

214

View publication statsView publication stats

https://www.researchgate.net/publication/242446023

